Computer Graphics

Sofia d'Atri & Nicolo' Tafta

Plain

Antialiasing implementation

Perlin Noise -Textures

Perlin noise -Normal maps

Perlin noise -Normal maps

Reflections - Advanced

Anisotropy enabled

Reflections - Advanced

Anisotropy disabled

Final Render

Ward anisotropic distribution

The Ward anisotropic distribution [1] \square uses two user-controllable parameters α_x and α_y to control the anisotropy. If the two parameters are equal, then an isotropic highlight results.

The specular term in the distribution is:

$$k_{ ext{spec}} = rac{
ho_s}{\sqrt{(N \cdot L)(N \cdot V)}} rac{N \cdot L}{4\pi lpha_x lpha_y} \exp \left[-2rac{\left(rac{H \cdot X}{lpha_x}
ight)^2 + \left(rac{H \cdot Y}{lpha_y}
ight)^2}{1 + (H \cdot N)}
ight]$$

The specular term is zero if $N\cdot L < 0$ or $N\cdot V < 0$. All vectors are unit vectors. The vector V is the viewing direction, L is the direction from the surface point to the light, H is the half-angle direction between V and L, N is the surface normal, and X and Y are two orthogonal vectors in the normal plane which specify the anisotropic directions.

Advanced Reflectance Model

Implemented the formula on the left.