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Fig. 1. Our technique predicts the visibility of temporal image changes across a wide field of view. The model takes into account both spatial and temporal
frequencies of the content as well as the eccentricity. On the left, we show the temporal fluctuations of sinusoidal patterns with spatial frequencies of 4.5 and
9 cycles per visual degree across 40◦ field-of-view for two different temporal frequencies: 10 and 30Hz. In the middle-top, we show our prediction for each
quadrant of this input. The spatial frequencies were downscaled by a factor of 10, and the contrast was enhanced for better visibility. Our visibility prediction
is shown in the middle-bottom for a natural video with surfers that is shown on the right.

Modeling perception is critical for many applications and developments in
computer graphics to optimize and evaluate content generation techniques.
Most of the work to date has focused on central (foveal) vision. However,
this is insufficient for novel wide-field-of-view display devices, such as
virtual and augmented reality headsets. Furthermore, the perceptual models
proposed for the fovea do not readily extend to the off-center, peripheral
visual field, where human perception is drastically different. In this paper, we
focus on modeling the temporal aspect of visual perception in the periphery.
We present new psychophysical experiments that measure the sensitivity of
human observers to different spatio-temporal stimuli across a wide field of
view. We use the collected data to build a perceptual model for the visibility
of temporal changes at different eccentricities in complex video content.
Finally, we discuss, demonstrate, and evaluate several problems that can
be addressed using our technique. First, we show how our model enables
injecting new content into the periphery without distracting the viewer,
and we discuss the link between the model and human attention. Second,
we demonstrate how foveated rendering methods can be evaluated and
optimized to limit the visibility of temporal aliasing.
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1 INTRODUCTION
The continuous improvements in display technology increase our
ability to meet the perceptual capabilities of human visual percep-
tion, leading to a more realistic, engaging, and immersive user ex-
perience. Unfortunately, hardware developments also lead to more
challenges regarding content creation and optimization techniques,
which have to resolve multiple different quality trade-offs. At the
forefront of these efforts are perceptually inspired techniques, which,
informed by studies of human perception, aim at providing optimal
user experience given hardware and computational limitations of
current display systems. The success of such techniques has been
demonstrated for many problems in computer graphics [Masia et al.
2013; Weier et al. 2017].

Many perceptually inspired techniques are based on variation in
human sensitivity to spatio-temporal luminance patterns through-
out the visual field [Barten 1993]. In the past, consideration of spatial
properties of the human visual system (HVS) led to many develop-
ments in image enhancement and rendering, for example, [Krawczyk
et al. 2007; Ramasubramanian et al. 1999]. Adding the temporal
aspect allows handling complex phenomena governing the spatio-
temporal aspect of the human perception and exploiting the human
insensitivity to high temporal frequencies [Berthouzoz and Fattal
2012; Didyk et al. 2010a,b; Yee et al. 2001]. Many of these aspects
are parts of image and video metrics [Aydin et al. 2010; Mantiuk
et al. 2011] which are important for evaluating computer graphics
techniques [Andersson et al. 2020; Gharbi et al. 2016; Narain et al.
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2015] and guiding optimization techniques [Oeztireli and Gross
2015; Wolski et al. 2019].

Until recently, such techniques solely focused on addressing the
perception of central vision, the so-called fovea. However, this turns
out to be insufficient, especially for the new wide-field-of-view vir-
tual and augmented reality headsets, which present high-resolution
images that span a significant portion of the human visual field.
Although these new capabilities enable both immersive virtual re-
ality applications and high-quality real-world augmentation, the
insufficient understanding of the processes governing the percep-
tion in the periphery prevents achieving the highest quality given
limited computational budget. Accurate modeling of human visual
perception in the periphery becomes even more critical for new dis-
play systems equipped with eye-tracking technology that enables
precise information about the gaze location. Such information opens
new opportunities for optimizing image content locally according
to the position of the image content in the visual field. In computer
graphics, the most significant applications leveraging these capabil-
ities are gaze-contingent rendering techniques [Guenter et al. 2012;
Murphy and Duchowski 2001; Patney et al. 2016; Stengel et al. 2016;
Tursun et al. 2019], which exploit the decline in human visual sensi-
tivity to distortions with increasing eccentricity. Unfortunately, the
perceptual models used in these applications are usually limited to
static content, and only very few consider the temporal properties
of the HVS in the periphery [Bailey et al. 2009; Sun et al. 2018]. Con-
sequently, the lack of techniques for modeling the human sensitivity
to spatio-temporal signals across a wide field of view keeps us from
using the full potential of the new type of devices.
In this work, we specifically study the sensitivity of the HVS to

spatio-temporal luminance patterns in the periphery. To this end,
we first describe a series of experiments conducted to measure the
visibility of spatio-temporal patterns. Based on these measurements,
we build an efficient model that predicts the visibility for complex
luminance patterns. The method relies on discrete cosine transform
(DCT), which is commonly used in video processing application and
ease the adoption of our model to a large range of applications. Our
experiments are tailored to this decomposition and contain DCT
basis functions. Despite using simple patterns in the experiments,
we demonstrate that by drawing inspirations from the mechanism
governing human perception and previous literature from visual
science, our model provides a good prediction for complex stimuli.
We also show several opportunities and applications which our

model enables. These include analyzing video sequences for detect-
ing visible temporal changes, invisible injection of new content in
the periphery that does not create a distraction for an observer, and
evaluating and optimizing foveated rendering to prevent visibility
of temporal aliasing. We also demonstrate a possible link between
the prediction of our model and human attention. To summarize,
the main contributions of this paper are:

• perceptual experiments investigating the visibility of spatio-
temporal patterns in the periphery,

• computational model based on DCT decomposition that pre-
dicts the visibility of temporal changes for complex video and
animation content across a wide field of view, and

• applications of the model for creating and optimizing content
for wide-field of view displays, including a new technique for
subtle introduction of new content in periphery.

2 RELATED WORK
Below, we describe related studies and models of the visibility of
spatio-temporal contrast patterns. We also summarize existing qual-
ity and visibility metrics, which extend these models to complex
stimuli, and applications that utilize both the perceptual models and
metrics.

Spatio-temporal contrast. Studying and modeling the perception
of spatio-temporal contrast has received a lot of attention in both
visual science and computer graphics. One of the earliest studies
that considered the sensitivity of the HVS to temporally chang-
ing patterns is conducted by De Lange [1952], which provided the
threshold modulation for a relatively small stimulus size of 2◦. These
initial measurements showed that the HVS has the peak temporal
sensitivity around 10 Hz, with a sharper falloff towards higher tem-
poral frequencies with a cutoff around 60 Hz. The sensitivity to low
temporal frequencies were measured by Thomas and Kendall [1962],
which were obtained in natural viewing conditions in a room where
the room lighting was modulated. These measurements contrasted
the study of De Lange in terms of the stimulus size and they reported
much lower sensitivities. These differences are later studied by Kelly
[1964], who identified different effects from stimulus size and time-
average luminance level (𝐿0) of the stimulus for low (< 10Hz) and
high (> 20Hz) frequency counterphase sine waves. As for stimulus
size, they observed an inverse relation between the size (> 2◦) and
temporal modulation sensitivity for low frequencies, whereas high-
frequency sensitivity was relatively unaffected. On the other hand,
high-frequency sensitivity was reduced by decreasing 𝐿0, whereas it
had little effect on low-frequencymodulation sensitivity. The studies
of temporal modulation sensitivity are followed by the derivation
of the so-called spatio-temporal contrast sensitivity function by
Robson [1966]. An extensive survey of the perceptual studies on
the perception of temporal stimulus and a model of temporal sensi-
tivity is provided by Watson [1986]. The model introduced in that
study is characterized by a linear filter, probability summation over
time and thresholds for temporal changes of brightness. Another
spatio-temporal model of contrast sensitivity is proposed by Barten
[1993] based on the temporal behavior of the photoreceptor cells
in the eye. More recently, Watson and Ahumada [2016] introduced
a spatio-temporal visibility model called the pyramid of visibility,
which is based on the observation that the contrast sensitivity of the
human eye being a linear function of spatial and temporal frequen-
cies. This led to a simple linear parameterization of the visibility
thresholds in this high-dimensional space for high temporal and
spatial frequencies.

The critical flickering frequency. The HVS retains the visual im-
pression of a stimulus for a brief amount of time after the stimulus
disappears. This perceptual phenomenon is due to low-pass filter-
ing effects of the HVS and it results in intermittent light above a
temporal frequency threshold, called critical flickering frequency
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(CFF) being perceived as continuous. CFF increases linearly with log-
stimulus area [Granit and Harper 1930] and log-luminance [Ferry
1892; Mäkelä et al. 1994; Porter 1902]) up to a saturation point and
then remains constant. It also increases with retinal eccentricity up
to 30◦–60◦ followed by a fall off at the far periphery [Hartmann
et al. 1979; Montvilo and Montvilo 1981; Tyler 1987]. CFF is usu-
ally measured for stimuli without spatial structure. However, in
the recent work of Krajancich et al. [2021], they provide CFF mea-
surements in peripheral vision for spatial frequencies up to 2 cpd.
Our work considers spatial luminance frequencies up to approxi-
mately 9 cpd. In addition, we provide a model tailored directly for
the spatio-temporal signal decomposition (DCT) of complex videos.
In other work, Mantiuk et al. [2021] also address peripheral vision.
Their work proposes a quality metric for a wide field of view video
sequences. While similar in applications, our work focuses on the
local visibility of temporal changes and not the overall quality of
the content. Our work also provides direct measurements of the
human sensitivity to well-defined and localized patterns whereas
their model is trained on a video dataset. Moreover, their method
computes visible quality differences with respect to a reference
input, while our work does not require a reference for detecting
visible temporal changes. We provide a more in-depth discussion
and comparison to the works of Krajancich et al. and Mantiuk et al.
in Section 7.

3 OVERVIEW
The ability to detect temporal changes in a visual stimulus depends
on several factors:

(1) Amplitude of temporal modulation of light
(2) Spatial frequency content of the stimulus
(3) Retinal position of the stimulus and the distance to the central

vision (fovea)
(4) Wavelength of the light
(5) Average illumination intensity
(6) Local adaptation to temporal changes
(7) Stimulus area
(8) Age and fatigue level of the observer
(9) Visual masking
(10) Eye movements
We focus on modeling the prominent effects of (1), (2), and (3)

for designing a perceptual model that computes the probability of
detecting the temporal changes by a human observer. Our model
works on luminance contrast computed from the visual stimulus
using the colorspace of display (e.g., sRGB). The luminance conver-
sion takes into account the wavelength of the light (4). However,
we do not consider the visibility of isoluminant chromatic contrast
patterns. As for illumination intensity, our model is calibrated for
photopic viewing conditions. To avoid local adaptation effects [Gins-
burg 1966], we used an experiment design where the duration of the
observation time does not affect the responses (as opposed to pro-
cedures like the adjustment method). It is known that the number
of cycles has an influence on the measured contrast threshold for
spatial sine wave gratings [Hoekstra et al. 1974; Howell and Hess
1978; Tyler 2015; Virsu and Rovamo 1979]. In our experiments, we
focus on the visibility of localized temporal changes and choose a

constant stimulus size for all tested retinal eccentricities. Our model
does not account for visual masking effects and the effects of eye
movements on the contrast thresholds [Daly 2001; Kelly 1979; Laird
et al. 2006].

In the next section, we provide the details of our psychophysical
experiment procedure for measuring the spatio-temporal contrast
sensitivity. In Section 5, we introduce our model that is calibrated
using our measurements. In Section 6, we show applications of our
model to predicting temporal change detection, controlling the visi-
bility of temporal image transitions, and benchmarking the visibility
of temporal aliasing in foveated rendering. Our applications to im-
age transition and temporal aliasing also serve as a validation of
our model because we compare the visibility of stimuli predicted by
our method with experimental data. In Section 7, we compare our
work with relevant studies and conclude our paper.

4 EXPERIMENTS
To build a computational model predicting the visibility of temporal
image changes in the periphery, we first collect perceptual data
to which the model can be fitted. Since the model relies on DCT
decomposition, we seek the information regarding the sensitivity
of the HVS to different components of DCT decomposition (DCT
basis functions) [Ahmed et al. 1974], which in our spatio-temporal
case, contain a different mixture of cross-modulated horizontal and
vertical sinusoidal gratings.

Stimuli. Each of the stimuli can be described using four param-
eters: horizontal spatial frequency 𝑓ℎ , vertical spatial frequency
𝑓𝑣 , temporal frequency 𝑓𝑡 , as well as eccentricity 𝑒 . Sampling the
four-dimensional space is required but challenging due to the time-
consuming procedure of measuring visibility threshold for each
of them. To acquire sufficient data while keeping the perceptual
experiment feasible, we sampled each dimension at three loca-
tions. More precisely, we used 81 stimuli, each being a combination
of 𝑓ℎ ∈ {0 cpd, 4.54 cpd, 9.06 cpd}, 𝑓𝑣 ∈ {0 cpd, 4.54 cpd, 9.06 cpd},
𝑓𝑡 ∈ {20Hz, 30Hz, 60Hz}, 𝑒 ∈ {10◦, 25◦, 40◦}. Unlike previous psy-
chovisual studies, which measure the sensitivity to isolated sinu-
soidal gratings with different orientations, the combination of hori-
zontal (𝑓ℎ) and vertical (𝑓𝑣 ) frequencies in our experiments results
in cross-modulated patterns (Figure 2). The eccentricity values were
chosen to minimize the risk of presenting the stimuli in the partici-
pant’s blind spot, which is usually located around 15◦ eccentricity
[Wandell and Thomas 1997]. Each of the stimuli was a 71 px ×
71 px square containing a pattern windowed with a circle having
2◦ diameter and containing a small Gaussian falloff. The temporal
modulation was temporal blending between each the pattern and its
negative and it spanned 200ms which allowed to reproduce all the
temporal frequencies on 120Hz display using 25 frames. The stimuli
were defined in a linear luminance space. The temporal average of
each stimuli was the background color corresponding 50% of the
max intensity of the display (83.165 cd/m2).

Visual sensitivity increases as the envelope of a sinusiodal grating
grows with an asymptote between 3–10 cycles of the underlying
signal [Howell and Hess 1978]. Majority of previous spatio-temporal
models and datasets use a Gabor with an envelope that allows for
2–3 cycles. Different from these previous psychovisual studies, we
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opt to keep stimuli size fixed in our measurements because of our
application based on the constant window size of DCT.

Task. Each task comprised of establishing the sensitivity of the
observer in detecting one of the stimuli. To this end, the partic-
ipants performed a threshold estimation task for each stimuli to
find the minimal amplitude of the stimulus’ pattern, e.g., contrast,
which is visible. We used vPEST [Findlay 1978] procedure with
two-alternative-forced-choice (2AFC) pairwise comparison. At each
trial the participants was first asked to fixate at the target shown
in the screen. Then, one spatio-temporal pattern was shown at a
given eccentricity in the mid-height of the display, either on the
left or right side from the screen center. For each trial the partic-
ipants were asked to decide on which side, the pattern appears.
Participants answered using arrow keyboard keys. Estimation of
thresholds for all 162 stimuli was split into 12 sessions where the
vPEST procedures were run in parallel, and at each step the current
stimuli from a random procedure was shown. One session took
approximately 20minutes, and the participants were asked to take a
break whenever they experienced fatigue. The experiment protocol
was approved by the ethical committee of the host institution.

Participants. Four participants (20-40 years old) took part in these
measurements. All had normal or corrected-to-normal foveal vision.
Participants did not report any peripheral vision deficiencies (pe-
ripheral acuity is not tested separately). Two participants were the
authors of the paper. Before the experiments, it was verified that
none of the stimuli falls into the blind spot of the participants. This
was tested separately for both eyes by showing a black circle in
place of the stimuli.

Hardware. The experiments were conducted using a gamma-
corrected 55-inch LG OLED55CX, 120Hz, 4K display. The OLED
technology provides sufficiently fast response time which was neg-
ligible in our experiments. For more details on the evaluation of the
display, see the supplemental materials. The setup of the display was
optimized to maintain constant peak brightness (167.33 cd/m2) and
contrast (494:1) over time. Participants carried out the experiment
using a chin-rest 62 cm from the display in a room with the ambient
light level at 700 lx.

Results. Figure 3 shows the thresholds estimated during the ex-
periment averaged across all participants. It can be observed that
the thresholds decrease for lower spatial and temporal frequencies.
For large spatial and temporal frequencies, the estimated values
because close to 0.5, which is the maximum contrast that can be
represented on the display. In these cases, the threshold estimation
procedure saturates as no larger contrast values can be considered.

5 MODEL
Our model is derived from the temporal contrast sensitivity func-
tion of De Lange [1952], which is measured for fovea. We start
by representing the De Lange curve using a polynomial approxi-
mation in Section 5.1. Then we present our DCT-based stimulus
decomposition method in Section 5.2. In Section 5.3, we describe
the computation of change detection for the periphery and its cal-
ibration to the experimental data introduced in Section 4. Finally,

Table 1. Notation that we use in this paper

Symbol Description
𝑓𝑡 Temporal frequency (log-Hz)

𝑓ℎ, 𝑓𝑣 Horizontal and vertical spatial frequencies (log-cpd)
𝑒 Eccentricity (log-deg)

𝑞(·) Quadratic function
𝑆𝐷𝐿 (·) Polynomial fit to De Lange curve in log-domain
𝑆𝑆𝑃 (·) Zero-truncated De Lange curve using softplus func-

tion
𝑆 (·) Eccentricity-dependent spatio-temporal contrast sen-

sitivity in log domain
𝑇 (·) The scaling function for the temporal contrast sensi-

tivity curve
𝑈 (·) The function for shifting the temporal contrast sensi-

tivity curve across the time axis (𝑓𝑡 )
𝐶 (·) Band-limited spatio-temporal luminance contrast

𝐶JND (·) Just-Noticable Difference scaled spatio-temporal lumi-
nance contrast

𝐶𝑀 (·) JND-scaled contrast after spatial and temporal pooling
𝑝𝑔 Guess rate, the probability of selecting the stimulus

by pure chance in psychovisual experiment (e.g., by
random guessing)

𝑝𝑙 Lapse rate, the probability of not selecting the detected
stimulus in psychovisual experiment (e.g., by human-
error)

we calibrate our model using the data from our psychophysical
experiment with complex stimuli consisting of video snippets from
natural videos in Section 5.4.

5.1 Spatio-temporal sensitivity
In order to derive an observer’s sensitivity to visual stimuli, we need
the psychometric function that gives the subject’s response to the
different stimulus levels. In practice, it is possible to assume that
the behavior changes smoothly around the measurement points
from a psychovisual experiment and make a prediction from the
experimental data. This approach is nonparametric, but it requires
a large number of measurements in our case because of increased
dimensionality of the psychometric function space, mainly due to
the changes in spatial and temporal frequencies as well as the retinal
eccentricity. Due to practical considerations for avoiding participant
fatigue and keeping the length of experiment sessions short, it is
not feasible to collect experimental data that fully span this high-
dimensional space. Instead, we take an alternative approach and
base our spatio-temporal sensitivity model on the De Lange curve,
which represents the human visual system’s sensitivity to temporal
modulations of light at different frequencies [De Lange Dzn 1952].
Then we aim to model the effects of additional factors such as the
retinal eccentricity and spatial frequency content using functions
that control the shape of the curve. As a result, we have a more com-
pact set of parameters that change the sensitivity in semantically
meaningful ways such as by tuning the position of the peak sensitiv-
ity or how fast the sensitivity declines with the retinal eccentricity.
This approach was also used in some of the previous psychovisual
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Fig. 2. Two example sets of the spatio-temporal stimuli used in our experiments. Each row corresponds to one stimuli, i.e., a sequence of images. The group on
the left is an example of three stimuli with different spatial frequencies and low temporal frequency. The group on the right presents a similar selection of
spatial frequencies for the highest temporal frequency considered.
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studies and it effectively reduces the amount of experimental mea-
surements required to a plausible level [Lesmes et al. 2010; Watson
and Ahumada 2016].
We start by expressing the measurements of De Lange curve

at fovea using a curve fit and then introduce an extension to the
peripheral visual field and multiple spatial frequencies (please see
Table 1 for the notation that we use in this paper).

De Lange fit. The curve fit is represented by a polynomial of
degree 𝑛 in the log-sensitivity and log-frequency domain:

𝑆𝐷𝐿 (𝑓𝑡 ) =
𝑛∑
𝑖=0

𝑎𝑖 · (𝑓𝑡 )𝑖 , (1)

where 𝑆𝐷𝐿 is the log-sensitivity (1/threshold) to the temporal mod-
ulations at log-frequency 𝑓𝑡 and 𝑎𝑖 is the coefficient. The mathe-
matical singularity observed while computing log(𝑓𝑡 ) at 𝑓𝑡 = 0 is
handled by using a power transformation, which is a more general
form of the standard log-transformation as defined in Appendix A.
The polynomial fit as given in Equation 1 is unbounded, but

a properly defined sensitivity function should not take negative
values. To introduce a lower bound at zero, we apply the soft-plus
function to the sensitivities provided by the De Lange curve, 𝑆𝐷𝐿 :

𝑆𝑆𝑃 (𝑓𝑡 ) = ln [1 + exp (𝑆𝐷𝐿 (𝑓𝑡 ))] . (2)

This form of parameterization provides a good fit when we use a
polynomial degree of 𝑛 = 3 (goodness-of-fit: 𝑅2 = 0.997, Figure 4).
After fitting the curve to the measurements of De Lange, we

fix the coefficients 𝑎𝑖 of this sensitivity curve for the fovea with
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Fig. 4. De Lange curve and our curve fit defined by Equation 1. Arrows
show the direction of change and the effect of an increase in the given set
of curve parameters 𝑏𝑖 .

spatially uniform luminance content (i.e., 𝑓ℎ = 0, 𝑓𝑣 = 0). Then we
extend this model by introducing two functions,𝑇 (·) and𝑈 (·), into
the formulation for the effects of the retinal position and the spatial
frequency content of the stimuli. These functions scale and shift the
sensitivity curve respectively, depending on spatial frequencies (𝑓ℎ ,
𝑓𝑣 ) and retinal position (𝑒). They are defined as

𝑆 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) = 𝑇 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) · 𝑆𝑆𝑃
(
𝑈 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒)

)
·, (3)
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𝑇 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) = 𝑏1 − 𝑏2 (𝑓ℎ + 𝑓𝑣)𝑏3 + 𝑏4𝑒𝑞 (𝑓ℎ+𝑓𝑣 ,𝒃5) , (4)

𝑈 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) = 𝑓𝑡 − 𝑏6 + 𝑏7 (𝑓ℎ + 𝑓𝑣) + 𝑏8𝑒, (5)

where 𝑆 (·) is the HVS contrast log-sensitivity to a stimulus defined
by spatio-temporal frequencies 𝑓ℎ , 𝑓𝑣 and 𝑓𝑡 at retinal eccentricity
𝑒 . 𝐵 = {𝑏𝑖 } with 𝑏𝑖 ≥ 0,∀𝑖 ≠ 5 is the set of scalar parameters
that we calibrate with psychovisual measurements. 𝑏2 and 𝑏4 ver-
tically compresses the curve and 𝑏3 introduces a non-linearity to
the effect of spatial frequencies 𝑓ℎ and 𝑓𝑣 on the contrast sensitiv-
ity. Another source of nonlinearity is implemented by taking into
account the effect of 𝑓ℎ and 𝑓𝑣 on the influence of retinal position
𝑒 . This non-linearity is defined as a quadratic function to provide
enough flexibility for modeling a potential non-monotonic effect:

𝑞(𝑓ℎ + 𝑓𝑣, 𝒃5) = 𝑏51 (𝑓ℎ + 𝑓𝑣)2 + 𝑏52 (𝑓ℎ + 𝑓𝑣) + 𝑏53, (6)

where 𝒃5 = [𝑏51 𝑏52 𝑏53 ]⊤ is a vector of 3 scalar parameters for the
quadratic function 𝑞(·).
On the other hand,𝑈 (·) models the horizontal offset of the sen-

sitivity curve, with 𝑏7 and 𝑏8 controlling the shift of sensitivity
towards lower temporal frequencies as 𝑓ℎ , 𝑓𝑣 and 𝑒 increase. 𝑏1 and
𝑏6 adjust the position and vertical scale of the curve at the fovea,
independently of the values that 𝑓ℎ , 𝑓𝑣 and 𝑒 take. The individual ef-
fects of the parameters 𝑏𝑖 on the behavior of the temporal sensitivity
curve are shown in Figure 4.

5.2 Decomposition of stimuli
In order to compute the visibility of visual stimuli we use Discrete
Cosine Transform as our spatio-temporal frequency band decom-
position method [Ahmed et al. 1974]. Our implementation is based
on the extension of DCT-I without ortho-normalization to multiple
dimensions, which is defined for one-dimensional inputs as:

𝑦𝑘 = 𝑥0 + (−1)𝑘𝑥𝑁−1 + 2
𝑁−2∑
𝑛=1

𝑥𝑛 cos
(
𝜋𝑘𝑛

𝑁 − 1

)
. (7)

Our method uses local DCT for windows of size (ℎ,𝑤, 𝑡) where ℎ
is the height and 𝑤 is the width while 𝑡 is the temporal length of
the window. In order to compute the luminance difference Δ𝐿, DCT
coefficients are scaled with a factor of 2 in each dimension except
for the coefficients with the index 𝑘 ∈ {0, 𝑁 − 1} and multiplied
by the peak luminance of the display. Then the spatio-temporal
band-limited Weber contrast is computed as:

𝐶 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣) =
Δ𝐿(𝑓𝑡 , 𝑓ℎ, 𝑓𝑣)

max{𝐿(0, 0, 0), 𝐿min}
, (8)

where 𝑓𝑡 , 𝑓ℎ , and 𝑓𝑣 are temporal and spatial frequency values in
horizontal and vertical directions, respectively. The background
luminance 𝐿(0, 0, 0) is computed from the DC component of the
DCT decomposition. To incorporate the effects of lower luminance
levels on the contrast threshold (commonly referred to as linear
and de Vries-Rose laws [Watson 1986]), we clip the value of the
denominator at 𝐿min.
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5.3 Temporal change detection probability
In the studies of visual perception, the sensitivity curves represent
the reciprocal of visibility threshold, where the stimuli are “barely”
visible. This level (also known as the Just-Noticable-Difference -
JND) is formally defined as 75% probability of correctly identifying
the stimulus from 2 alternatives in a psychophysical experiment,
where choosing the correct alternative by random guessing is 50%. In
order to compute the probability of detection for a spatio-temporal
window of visual stimulus, we first divide the contrasts computed
from the DCT coefficients by the visibility thresholds given by Equa-
tion 3. This scales the contrasts such that a unit value corresponds
to a contrast level of 1 JND:

𝐶JND (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) = 𝑆 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒) ·𝐶 (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣), (9)

where 𝐶 (·) is the band-limited spatio-temporal contrast computed
from multidimensional DCT coefficients and 𝐶JND (·) is the JND-
scaled contrast.

In order to compute an overall JND-scaled contrast by taking into
the effect of subthreshold components of the visual stimulus, we
perform spatio-temporal pooling on JND-scaled DCT contrast using
Minkowski summation [To et al. 2011]. We leave the DC component
at 𝑓𝑡 = 0 (the temporally static component of the stimulus) out of
pooling:

𝐶M (𝑒) = ©«
∑

𝑓𝑡>0,𝑓ℎ,𝑓𝑣

��𝐶JND (𝑓𝑡 , 𝑓ℎ, 𝑓𝑣, 𝑒)
��𝑟 ª®¬

1/𝑟

. (10)

Finally, we compute the probability of detecting the temporal
change by applying the Weibull psychometric function [Weibull
et al. 1951]:

𝑃 (detection|𝐶M (𝑒)) = 𝑝𝑔 +
(𝑝𝑔 − 1) · (1 − 𝑝𝑙 )

exp
[
− (𝐶M (𝑒)/𝛽0)𝛽1 − 1

] , (11)

where 𝑃 (detection|𝐶M (𝑒)) is the probability of choosing the correct
alternative in a psychometric process by detecting the temporal
change in a visual stimulus, 𝑝𝑔 is the guessing rate (0.5 in 2AFC), 𝑝𝑙
is the lapse rate (giving an incorrect answer although the stimulus
is detected), 𝛽0 and 𝛽1 are the parameters that control the stimulus
level at JND and the slope of the psychometric function, respectively.

5.4 Calibration
We calibrate the parameters of our model using the data
that we collected during the perceptual experiments. The first
experiment that we conducted in Section 4, provides the
thresholds measured at the selected set of spatial frequencies
𝑓ℎ, 𝑓𝑣 ∈ {0 cpd, 4.5 cpd, 9.0 cpd} and temporal frequencies 𝑓𝑧 ∈
{2.5Hz, 5Hz, 10Hz, 20Hz, 30Hz, 60Hz}. These thresholds are aver-
aged among participants and used to calibrate the parameters
𝐵 = {𝑏𝑖 }. The stimuli used in this experiment were synthetic si-
nusoidal patterns, which did not include the combined effects of
multiple DCT coefficients for calibrating the pooling parameter 𝑟 in
Equation 10. Therefore, we manually selected 𝑟 = 1.7 for the cali-
bration of these initial set of parameters. The temporal sensitivity
curves we obtained from this first step of calibration are shown in
Figure 5.

Next, we calibrated the pooling parameter 𝑟 and the parameters
of the psychometric function (𝑝𝑔 , 𝑝𝑙 , 𝛽0, 𝛽1) that map the JND-
scaled contrast 𝐶JND to the detection probability 𝑝𝑑 . For this sec-
ond phase of calibration, instead of synthetic stimuli, we cropped
natural videos of size 71 px × 71 px which also include the com-
bined effects of having different spatial and temporal frequencies,
as typically observed in natural visual stimuli. In the temporal di-
mension, these videos consisted of 7 frames which are played back
and forth in a constant loop during the experiment. We selected 3
cropped video segments for each level of JND-scaled contrast levels
in 𝐶JND ∈ {0.25, 0.5, 1.0, 2.0, 4.0}. We generated a static version of
these video segments by removing all temporal frequencies except
for the DC component and asked the participants to select the video
with temporal changes in a 2AFC experiment where both the origi-
nal and static versions are shown to the participants on the left and
right parts of the display, respectively. The same participants from
the previous experiment have participated in this experiment and
they performed 10 repetitions for each stimulus. Next, we computed
the detection rates from their responses and estimated the pooling
parameter 𝑟 as well as psychometric function parameters (𝑝𝑔 , 𝑝𝑙 ,
𝛽0, 𝛽1) using maximum likelihood estimation. The detection rates
computed from this experiment and the estimation are shown in
Figure 6.We tested the values for 𝐿min from the range [0, 100] cd/m2

for the fit and selected 𝐿min = 50. We provide the optimal parameter
values obtained from the calibration in Table 2 and the contrast
threshold predictions of our model for different spatio-temporal
frequencies and eccentricities are shown in Figure 7. In addition,
we are planning to make a Python implementation of our method
publicly available for other researchers’ use.

Table 2. The values of the parameters used in our model after calibration.
𝑅2 is the coefficient of determination and 𝑅2

adj is the degree-of-freedom

adjusted 𝑅2 (number of model parameters 𝑘 = 19).

𝑎0 𝑎1 𝑎2 𝑎3
3.2714 0.3830 0.7669 -0.2555
𝑏1 𝑏2 𝑏3 𝑏4

1.0051 0.1830 0.9517 0.0173
𝒃5 𝑏6 𝑏7 𝑏8 r

[−0.1375 0.3753 2.3855]⊤ 0.0 0.0 0.0 1.9932
𝑝𝑔 𝑝𝑙 𝛽0 𝛽1 𝑅2 𝑅2adj
0.5 0.0 1.7934 1.5 0.837 0.713

6 APPLICATIONS
Perceptual models and visibility predictors have a wide range of ap-
plications in computer graphics and related fields. The most simple
applications include visualization and evaluation of algorithms for
processing and creating visual content, e.g., rendering and compres-
sion. More advanced techniques leverage perceptual models while
optimizing visual content. Due to the efficiency of our model, it can
be used in both scenarios.

Implementation and visual evaluation. Our model (Section 5) can
be used to visualize the visibility of temporal changes in a video,
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given the gaze location from an eye tracker. Since themodel operates
on 71×71×25 spatio-temporal patches, to provide the prediction for
a video, we divide the video into nonoverlapping patches of this
size. For each patch, the prediction can be computed and presented
in the form of a heatmap visualizing the probability of detecting
the temporal changes for each spatio-temporal location. We show
a sample map of change detection maps for a natural video of an
ocean with waves in Figure 8. The computed probabilities show
a declining trend as the distance from the gaze location increases.
This trend is mostly attributed to the behavior observed in the
HVS, which is the loss of spatio-temporal sensitivity as the retinal
eccentricity increases (also observable in our model fit in Figure 5).
The processing time is 5.5 mins for a 5-second 120FPS 4K video
(unoptimized parallel implementation using Python 3.6, NumPy
1.19.3, SciPy 1.5.0, OpenCV-python 4.5.1.48 on 3.6-GHz 8-core Intel
Core i7-9700K CPU). The largest portion of the computational cost
is incurred during the computation of DCT. Below, we provide two
examples of use cases of our technique.

a

b

c

: gaze location 0% 100%Probability of detection

tim
e

tim
e

horizontal position

Fig. 8. Visualization of temporal change detection probabilities computed
using our method for a natural video. The first frame of the video, the
assumed gaze location and the overlay of computed change detection prob-
abilities are provided in (a). Time sliced images showing the changes in
temporal domain for original video (b) and the probability map (c) are
shown for the red scan line in (a).

6.1 Imperceptible transitions
Measuring visibility of temporal changes is important when the
visibility has to be controlled within specific limits. For example,
while designing graphical user interfaces for head-up or optical
see-through displays, it is usually important to keep critical visual
status updates more visible, whereas less critical updates should
not interfere with the users’ task performance by grabbing their
attention unnecessarily. Similar to visible difference predictors that
are designed to improve perceived quality by keeping image distor-
tions within specific visibility limits, outputs of our method may
be used for improving visual task performance and promoting sus-
tained visual attention by adjusting the temporal visibility based on
importance.
For this application, we consider a task of introducing new con-

tent into an existing scene without causing distraction to a viewer.
We propose to consider this as a problem of computing the fastest
image transition that remains undetectable when it is applied to
an input image sequence at a given visual eccentricity. When tran-
sitioning from a source image to a target image, if the transition
is performed slowly, the probability of detecting the visual change
decreases. But using slow transitions limits how often visual infor-
mation can be updated in the aforementioned applications for user
interfaces or AR/VR headsets. It is possible to aim for a fast transi-
tion speed to complete the visual update in a short time, but that
increases the probability of detecting the changes. A naive approach
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to keep the probability of detection by a human observer at the specified values 𝑝𝑑 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} at the retinal positions 𝑒 ∈ {0◦, 10◦, 20◦, 30◦ }
for transitioning from a dog image to a cat image shown in the middle row (at 𝛼0 = 0.0 and 𝛼𝑁 = 1.0, respectively). Bottom row shows a sample stimuli
from one of the trials, where 5 patches (randomized at each trial) are getting interpolated over time, each having a different detection probability and rate of
interpolation (color coded). The experiment protocol is shown on the left of the bottom row.
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would be using a constant rate of transition not to exceed a desired
probability of detection but that also requires a model to compute
the probability for different transition speeds. We can perform such
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Fig. 11. Response times measured in our subjective experiment. We observe
significantly longer response times in the experiment conducted using only
the set of low temporal change detection probabilities (𝐿 = {0.1, 0.3, 0.5},
𝑝 < 0.001 - Wilcoxon rank-sum test). The curves represent log-logistic
probability density functions computed using MLE.

visual updates faster with our method because we can compute
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the transition speed between source and target stimuli adaptively
depending on underlying content. Moreover, we can keep the proba-
bility of change detection constant over the course of the transition,
making it perceptually stable.
Our method takes as input a source image (𝐼𝑠 ), a target im-

age (𝐼𝑡 ), and a blending function 𝜙 (𝐼𝑠 , 𝐼𝑡 , 𝛼), which for 𝛼 ∈ [0, 1]
provides a continuous transition between the two input images.
Additionally, the input includes a user-chosen level of temporal
change detection probability (𝑝𝑑 ) and an eccentricity (𝑒) at which
the transition should occur. Based on the input, the method com-
putes {𝛼𝑖 }𝑁𝑖=1, such that a viewer detects the sequence of images
{𝐼𝑛 = 𝜙 (𝐼𝑠 , 𝐼𝑡 , 𝛼𝑖 )}𝑁𝑖=1 shown at the eccentricity 𝑒 with the proba-
bility 𝑝𝑑 . The tasks is accomplished by computing the amount of
increments Δ𝛼𝑛 = 𝛼𝑛 − 𝛼𝑛−1 that satisfies the level of detection
probability, 𝑃𝑛 (detection|Δ𝛼𝑛) = 𝑝𝑑 ,∀𝑛 at each frame update.

To solve this problem, we use greedy optimization. We start with
𝛼0 = 0.0 and compute the step sizes Δ𝛼𝑛 that we should take to
increment 𝛼𝑛 at each frame to satisfy 𝑃𝑛 (detection|Δ𝛼𝑛) = 𝑝𝑑 . In
order to compute Δ𝛼𝑛 , we apply our method to non-overlapping
temporal windows of 25 video frames generated using the image
blending 𝜙 and solve for the following minimization:

Δ𝛼∗𝑛 = argmin
Δ𝛼𝑛

∥𝑃𝑛 (detection|Δ𝛼𝑛) − 𝑝𝑑 ∥22, (12)

where 𝑃𝑛 (detection|Δ𝛼𝑛) is computed using our visibility model. To
solve the above optimization problem, we apply Brent’s root-finding
algorithm.

Our model was calibrated using a spatial window size of 71 × 71
pixels. To compute the probability for larger image patches, we split
them into smaller non-overlapping subwindows of size 71 × 71, and
solve the optimization (Equation 12) for each of them separately. We
then apply the max-pooling strategy, which assumes that the visi-
bility of the temporal changes in the bigger window is determined
by the sub-window with the most visible changes. Consequently,
we set the 𝛼𝑛 to the minimum across the sub-windows.

Figure 9 demonstrates an example of running our optimiza-
tion on a pair of cat and dog images for retinal eccentricities 𝑒 ∈
{0, 10, 20, 30} and detection probabilities 𝑝𝑑 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
As the blending function here and in other our experiments, we
used a linear blending 𝜙 (𝐼𝑠 , 𝐼𝑡 , 𝛼𝑖 ) = (1 − 𝛼𝑖 )𝐼𝑠 + 𝛼𝑖 𝐼𝑡 . The plots at
the top of the figure visualize how the step sizes (Δ𝛼𝑛) change de-
pending on eccentricity and target probability. From these plots, we
observe that more rapid interpolations between two images result
in a higher probability of temporal change visibility. In addition,
the interpolation speed defined by Δ𝛼𝑛 is not usually uniform over
time, and we see slow-downs or speed-ups depending on the image
content.
The sequence of steps (Δ𝛼𝑛) is valid only for one eccentricity

value. In practice, the viewer is most likely constantly changing
their gaze location, and the step sequence has to adapt to the current
eccentricity value to maintain the constant level of the transition
visibility. To this end, our method precomputes and stores the set of
sequences (Δ𝛼𝑛) for a finite set of different eccentricities (Figure 9,
top) and by smoothly interpolating between them use the sequence
which corresponds to the current eccentricity. This enables a dy-
namic adaptation to the current gaze location. The transition slows

down when the viewer’s gaze is closer to the position at which the
transition occurs, and conversely it speeds up when the gaze moves
away. Please see our supplemental materials for experiencing the
effect.
In order to evaluate our technique, we conducted a subjective

experiment in which we analyzed how the optimized content im-
pacts the participants’ gaze patterns. More specifically, we were
interested in validating a relation between the optimized probability
of detection and eye movements towards the changing patterns. In
each trial of the experiment, participants were shown a full-screen
image containing a grid of cats and dogs images (Figure 9). After a
brief delay, five random patches started alternating between a cat
and a dog image according to previously optimized probabilities.
Participants were asked to look at the region of the image that draws
their attention due to temporal changes (please see the experiment
protocol in Figure 9). Each trial finished as soon as the participant’s
gaze reached the position of one of the five changing patches. Dur-
ing the trial, the participant could freely move their gaze as the
method was adapting the transitions according to the current gaze
location. Twelve participants (ages between 21-32) took part in the
experiment conducted on an Acer X27 display at 3840 × 2160 reso-
lution and 120Hz refresh rate using Tobii Pro Spectrum eye tracker
to monitor the gaze location. The experiment consisted of 30 trials
for each participant and took approximately 5 minutes to complete.
We run two versions of this experiment. In the first version, we

picked the detection probabilities of 5 pairs of patches uniformly as
𝐴 = {0.1, 0.3, 0.5, 0.7, 0.9} (All probabilities). In the second one, we
used a subset of lower probabilities 𝐿 = {0.1, 0.3, 0.5} (Low proba-
bilities) while keeping the number of the simultaneously changing
patches during each trial the same (5). Figure 10 contains a his-
togram of change detection probabilities (𝑝𝑑 ) vs. the number of
trials in which they have attracted the gaze of the participants.

In the experiment that we tested with 𝑝𝑑 ∈ 𝐴, we observe that the
temporal changes with 𝑝𝑑 = 0.9were chosen the most frequently by
the participants, while this number declines rapidly as 𝑝𝑑 decreases
(Figure 11 - pink bars). We see a similar trend in the experiment with
the set of 𝑝𝑑 ∈ 𝐿, where the participants similarly shift their gaze to
the temporal change with the highest probability of detection in the
set 𝐿 (𝑝𝑑 = 0.5) (Figure 11 - blue bars). These results demonstrate
that, indeed, the higher the probability predicted by our method,
the more likely the patch will attract the participant’s gaze.

To further investigate the difference between the experiment with
low and high probabilities, (Figure 11) provides the time passed from
the start of each trial until the participant’s gaze shifts to one of the
patches with temporal changes. The medians of the times are differ-
ent in two experiments (𝑝 < 0.001 - Wilcoxon rank-sum test). The
average time that we measured in the experiment with all probabili-
ties is `𝐴 = 1.8951𝑠 (𝐶𝐼95% : [1.5677, 2.2793]) while the average time
from the low probabilities is `𝐿 = 7.1956𝑠 (𝐶𝐼95% : [6.4563, 8.2947])
(Figure 11). This observation suggests that although the participants
shift their gaze to the patch with the highest 𝑝𝑑 shown in both
experiments, there is a significant increase in the average response
time, possibly due to a higher level of cognitive effort required to
detect the temporal change when 𝑝𝑑 is small. We postulate that
the shorter time for the experiment with all probabilities results
from the fact that there were clearly visible transitions that were
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Fig. 12. The experiment protocol that we used to measure the correlation
between the computed visibility of temporal changes from our method and
preferences of participants (Section 6.2).

Table 3. The size of the eccentricity regions and the pixel distances that we
used as a factor of native display resolution (3840 × 2160) in our foveated
rendering implementation (Section 6.2).

Region Radius Pixel distance
Fovea 8◦ 1×

Near periphery 23◦ 2.5×
Far periphery 43◦ 5.0×

immediately visible to the subjects. While in the second experiment,
the visibility levels were much closer to the threshold, and the partic-
ipants needed more time to localize these transitions. Consequently,
besides showing the effectiveness of our optimization method, this
experiment further validates our model for predicting the detection
probability of temporal changes in the periphery.

6.2 Temporal aliasing in foveated rendering
An exciting application of our model is foveated rendering, which
aims to reduce the shading rate, resolution, and bit depth to improve
the rendering times or for image/video compression with minimal
sacrifice of perceived quality [Browder and Chambers 1988; Daly
et al. 2001; Glenn 1994; Guenter et al. 2012; Kortum and Geisler 1996;
Tsumura et al. 1996]. We focus on foveated rendering applications
with a lower shading rate in the periphery, which may lead to
temporal aliasing. Temporal aliasing leads to deterioration in visual
quality if not properly treated [Patney et al. 2016]. While some
work has already considered modeling visibility of the foveation
in static images [Tursun et al. 2019], there is no technique capable
of predicting the visibility of the temporal artifacts. Our method
is in particular suitable for such applications. If applied directly to
foveated rendering content, it can already predict visible temporal
changes.

In our experiment, we implemented our own foveated rendering
testbed in the Unity game engine (HDRP - 2020.3.11f1) [2021] with
3 eccentricity regions (i.e., fovea, near periphery, and far periphery)

similar to Guenter et al. [2012] (Table 3). Then we rendered 5-second
long videos of Amazon Bistro [Lumberyard 2017] and Crytek Sponza
[McGuire 2017] models with a slow camera motion in the forward
direction. In different rendering runs, we applied the following anti-
aliasing methods in Unity to near- and far-peripheral regions:

(1) Fast approximate anti-aliasing (FXAA) [Lottes 2009]
(2) Subpixel morphological anti-aliasing (SMAA) [Jimenez et al.

2012] (quality preset: high)
(3) Temporal anti-aliasing (TAA) [Korein and Badler 1983] (qual-

ity preset: high)

In addition to these anti-aliasing methods, we also rendered both
models without applying any anti-aliasing (No AA) and computed
the probability of temporal change detection from all videos using
our method.
In order to measure the correlation of probabilities computed

by our method and the visibility of any temporal artifacts in the
output of anti-aliasing methods, we conducted a 2AFC subjective
experiment, where the participants compared pairs of videos that we
rendered. The same group of participants that has participated in the
experiment of imperceptible transitions (Section 6.1) did this experi-
ment. It consisted of 12 trials, and in each trial the participants were
asked to watch a pair of anti-aliasing results from the same scene
and choose the one with less flickering (Figure 12). The experiment
was conducted on the same 55-inch LG OLED55CX, 120Hz, 4K dis-
play that we used to calibrate our model due to its large field-of-view
(Section 4). The pairwise comparison results from this subjective
experiment was converted into just-objectionable-difference (JOD)
quality scores using Thurstonian scaling [Perez-Ortiz and Mantiuk
2017; Thurstone 1927]. The probability maps of temporal change
detection from our method are pooled using Minkowski summation
with exponent 𝛽 = 3 to obtain a scalar score [Graham et al. 1978;
Rohaly et al. 1997; To et al. 2011]. The histogram of the probabilities
computed for each anti-aliasing method and a plot of the JOD scores
computed from the subjective experiment vs. pooled probabilities
from our method are shown in Figure 13. We observe that FXAA
and SMAA methods scored close to the rendering result with no
anti-aliasing, whereas TAA turned out to be significantly superior
for suppressing flickering in the periphery according to the subjec-
tive experiment results. The average probability of temporal change
detection computed by our method is also in agreement with the
results of subjective experiment (Pearson 𝜌 = −0.903, 𝑝 = 0.002 -
t-test). Upon visual inspection, we also observe that the computed
probability maps overall show higher probability of change detec-
tion for No AA, FXAA, and SMAA compared to TAA (please see
the time-sliced images at the bottom row of Figure 13).

A direct application of our method to natural videos would detect
the temporal changes that also arise frommotion in the scene. Under
some circumstances, it may be desirable to evaluate the potential
aliasing due to only foveation. We also show an application that
decouples the temporal changes due to motion in the scene and the
aliasing. To this end, we warp the subsequent frames using motion
flow vectors, effectively removing any motion, before applying our
model (Figure 14). As it can be observed in the figure, when such
compensation is not performed, the visibility of the aliasing is domi-
nated by the motion. Both with and without anti-aliasing sequences
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produce similar visibility maps (top row). When the motion com-
pensation is applied, only the effect of aliasing is detected by our
method. Consequently, the prediction for the sequence with motion
compensation and anti-aliasing does not include visible temporal
changes.
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Fig. 15. Comparison of critical flickering frequency (CFF) computed by our
method and Krajancich et al.[2021]. Straight lines correspond to the part
of the curves obtained by fitting to actual measurements, whereas dashed
lines represent extrapolations of the models. The bounds of the measured
eccentricities are computed as the summation of reported eccentricity and
the Gaussian window parameter (𝜎) for Krajancich et al.[2021] because
their stimuli size depends on the spatial frequency level tested.

7 DISCUSSION
Weprovide a discussion comparing ourmodel with two recentworks
on similar topics. In the first one, Krajancich et al. [2021] provide
measurements and a model of critical flicker frequencies across a
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Fig. 16. The probability of detecting a visible temporal change by a human
observer as estimated by FovVDP and our method. The histograms on the
left show the predictions from two methods for cross-modulating sinusoidal
gratings (Section 4), whereas the scatter plots on the right show the predic-
tions for complex stimuli (Section 5.4). 𝛽 = 3 is the Minkowski summation
parameter used for global pooling of our method’s predictions (for details,
please refer to the text).

wide visual field of view (up to 60◦ of eccentricity) for Gabor patches
of spatial frequencies up to 2 cpd. To handle higher spatial frequen-
cies, the model relies on extrapolation using an existing model
for spatial acuity. Compared to their work, our measurements aim
at acquiring sensitivity of the HVS to continuous spatio-temporal
signal variation. While our measurements cover a slightly lower
range of eccentricities (45◦), we test spatial frequencies up to 15 cpd.
More importantly, in contrast to the suggested application of Kra-
jancich et al. based on Discrete Wavelet Transform (DWT), we show
end-to-end applications with DCT-based video decomposition and
its thorough subjective validation in two experiments. DCT has no
special advantage over other well-known band decomposition meth-
ods using Fourier or Gabor basis functions because complex stimuli
can be represented equally well in all three approaches. We opted
for DCT decomposition in our technique because it has established
widespread use in image compression standards such as JPEG and
there is a support from a large variety of numerical libraries. That
provides convenience while implementing complex video content
processing tasks, some of which are demonstrated in this paper.

We compute CFF with our method and compare it with the data
provided by Krajancich et al. in Figure 15. Both models are calibrated
to combinations of different retinal positions of stimuli (eccentricity)
and spatial frequency content that are presented during psycho-
visual experiments (Figure 15, solid lines). Outside the region of
measurements, there is no experimental data for fitting the model
parameters and CFF computations are obtained by extrapolation
(Figure 15, dashed lines). One major difference between our study

and Krajancich et al. is the stimuli size, which is fixed in our experi-
ments whereas it grows to keep the number of Gabor cycles constant
in Krajancich et al. The difference becomes significant especially for
low spatial frequencies, because the stimuli cover the whole visual
field when the spatial frequency content reaches zero in the exper-
iments of Krajancich et al. Such stimuli essentially test all retinal
eccentricities at the same time. In contrast, we always use a fixed
envelope for sinusoidal gratings that make our measurements local.
Another difference between two studies is the type of displays used
in the experiments. While the study of Krajancich et al. is able to
measure temporal frequencies up to and beyond 100Hz, we made
our measurements on a display that supports up to 60Hz(120FPS).
Our model is in agreement with the predictions of Krajancich et al.
for Krajancich et al. predict an increase in CFF for 2 cpd. Beyond this
frequency, their model relies on extrapolation. On the other hand,
for spatial frequencies below 2 cpd, their model predicts an increase
in CFF with eccentricity before it declines again in the far periphery.
This is an observation commonly shared by previous CFF studies. In
contrast, we observe that our model predicts a monotonic decrease
in CFF as the stimulus eccentricity increases even when the spatial
frequency is below 2 cpd. This type of behavior in our model may
be explained by a fixed and relatively small stimuli size that results
in a monotonic change in CFF with eccentricity [Hartmann et al.
1979].

In the secondwork, a different problem is addressed byMantiuk et
al. [2021]. The authors propose a quality metric (FovVDP) for wide
field-of-view videos. The method is trained on a dataset containing
information about comfort and uniformity of quality degradation
obtained using an off-the-shelf virtual reality headset. Compared to
our technique, their method targets different applications. It aims to
predict the overall quality score and supra-threshold visibility of a
change in the quality with respect to a reference video by providing
a scalar quality score for the entire sequence. In contrast, the goal of
our model is a precise prediction and localization of the probability
of seeing local temporal changes without a reference. This is critical
for many applications in computer graphics where localization is
important and having a non-reference method is desirable. While
the method by Mantiuk et al. provides error distribution across each
frame, the interpretation of these values remains difficult, as the met-
ric was not trained on a local visibility dataset. Another important
aspect of our technique is that our precise visibility measurement
will more easily extend across different display devices than the
calibration based on a dataset collected on a rather limited headset.

We compare the outputs from our method and fromMantiuk et al.
on our datasets of cross-modulating sinusoidal gratings (Section 4)
and complex stimuli (Section 5.4). We select our dataset as the com-
mon input for both methods because there is no established dataset
from previous works for performing such a comparison. We convert
the scalar Just Objectionable Difference (JOD) score produced by
FovVDP to the probability of detection using the inverse of the stan-
dard normal CDF. In contrast to FovVDP, our method does not have
a global pooling step, and it is calibrated to predict local visibility
across the visual field. Therefore, we apply Minkowski summation
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with parameter 𝛽 = 3 1, which is a reasonable value for visual cue
summation [To et al. 2011]. The reference input of FovVDP consists
of a uniform gray level that is equal to the background (also the
temporal average of the stimuli). The modulation amplitude of the
stimuli is set to the threshold from our experiment that corresponds
to the detection probability 𝑃 (det) = 0.5. We show the histogram
of the probability predictions from FovVDP and our method in
Figure 16. We observe that FovVDP predictions significantly under-
estimate visibility with a peak close to 𝑃 (det) = 0. On the other
hand, the histogram of the predictions from our method resembles a
truncated Gaussian with a mean around 𝑃 (det) = 0.2. This is still an
underestimation because, ideally, both methods should produce pre-
dictions centered around 𝑃 (det) = 0.5. For our method, we attribute
this observation to how visual masking is handled. Our method
does not explicitly model visual masking effects, but it is calibrated
on complex stimuli that include masking effects. We believe that
this leads to underestimated predictions for simple stimuli that have
a very sparse DCT representation. On the right side of Figure 16,
we show the predictions of FovVDP and our method for complex
stimuli from Section 5.4. We observe that FovVDP predicts most
of the stimuli as barely visible unless 𝑃 (det) is very close to 1. Our
predictions show a smoother transition as the measured probability
increases.
To summarize, the two mentioned techniques and our method

aim to model human perception in peripheral vision. Yet, the differ-
ences between them, make them suitable for different applications.
While work by Mantiuk et al. focuses on quality score for an en-
tire video sequence, our method can provide a precise information
about the local visibility of temporal differences. In addition, differ-
ent from our method, their predictor is not trained on a dataset of
temporal change visibility. On the other hand, perceptual model by
Krajancich et al. addresses the problem of critical flicker frequencies,
which is more similar to our goal, but it is unclear at this point how
it can be applied to complex video content.

8 LIMITATIONS AND FUTURE WORK
From vision science perspective, peripheral stimuli are scaled ac-
cording to the cortical magnification factor (CMF) and the envelope
of spatial gratings is selected such that it contains at least 2–3 cycles
[Howell and Hess 1978; Johnston 1987; Virsu et al. 1982; Watson
1987]. On the other hand, we used a fixed stimuli size in our experi-
ments because of our applications, which use DCT decomposition
with a constant window size. The influence of limiting the envelope
size for stimuli with low spatial frequencies is not clearly modeled by
previous studies. In future work, this effect may be investigated with
a frequency band decomposition that allows for variable envelope
sizes.
In our experiments, we did not consider different backgrounds.

As a result, we did not model the spatial visual masking effect.
Masking can potentially reduce visibility; therefore, without this
consideration, our model remains conservative in its prediction.
Investigating the effect of masking in the experiments and collecting
samples for a wider range of temporal and spatial frequencies, as

1for an actual application, 𝛽 should be estimated based on new psychovisual experiment
data, which is left out of the scope of this study

well as different luminance levels, will lead to a more accurate
model. However, when designing such experiments, it is critical to
monitor the dimensionality of the problem because as more factors
are investigated, psychophysical experiments may quickly become
infeasible in terms of duration.
Another limitation regarding our experiments is the number of

participants that did not allow us to capture the variability of the
measured thresholds in the population and increase the noise in our
measurement. However, we argue that because of the nature of our
experiments, the important perceptual characteristic is captured in
the measurements. Furthermore, the utilization of previous mea-
surements for fovea [De Lange Dzn 1952] allowed us to regularize
our possibly noisy data. Having a small number (4) of participants
to model and calibrate perceptual models is not uncommon in aca-
demic vision science. This is partly due to long experiment sessions
(12 × 20 minutes) and more extensive measurements performed in a
controlled experiment environment (e.g., display and ambient lumi-
nance levels, display calibration, proper positioning of the viewer,
avoiding participant fatigue, vision tests, etc.). On the other hand,
for industrial applied vision, general practice aims for a higher num-
ber of participants when feasible. In our measurements, the data
collected from different participants were mostly in agreement with
each other, and we did not have conflicting observations in the data
that would otherwise require seeking additional participants or re-
vising the experiment protocol. Moreover, the calibrated perceptual
model is verified with further experiments described in applications
section with a larger participant group, which would otherwise fail
if the model was not representative of general perceptual character-
istics of the HVS.
When modeling our data from psychophysical experiments, we

rely on previous measurements derived for fovea [De Lange Dzn
1952]. While we observe a good fit of our data, our model extrap-
olates beyond our measurements. Therefore, the accuracy could
be improved with more extensive measurements. Furthermore, the
choice of temporal CSF data could be improved with those newer
than De Lange [1952] such as the data provided by Watson [1986].

Our model applies pooling only across different DCT components.
It was a design choice not to include spatial pooling across different
patches since we did not collect the necessary data. In future work,
when threshold measurements for different sizes of stimuli are per-
formed, an improved version of our model could use a multi-scale
approach to account for temporal fluctuations with different spatial
support.
Imperceptible transitions, which is discussed as one of our ap-

plications in Section 6.1, have been extensively studied in the past
as a part of video compression and watermarking [Bi et al. 2013;
Bradley et al. 2012; Lubin et al. 2003; Noorkami and Mersereau 2008].
However, most of those studies do not model visibility as a function
of eccentricity. An application of our model to concealing digital
watermarks in videos and adjusting video compression rates based
on temporal change visibility may be promising future research
directions.

Finally, each one of our applications is a demonstration of a pos-
sible use case of our model. In our work, we focused on deriving the
model while leaving the full development of applications that utilize
it for future work. A potential research direction would be towards
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decoupling temporal changes (e.g., due to motion and other factors),
then computing their individual contributions to the visibility. An-
other interesting research direction would be to control the speed of
complex image interpolation techniques which consist of multiple
transformations to the inputs (e.g., a combination of image warping
and interpolation). Such methods would require an extension of our
application on imperceptible image transitions (Section 6.1) to an
optimization of multi-dimensional Δ𝛼 vector.

9 CONCLUSION
With the development of new wide-field-of-view displays equipped
with eye tracking technology, correct treatment of peripheral vision
becomes essential. In this work, we argue that perceptual models for
the peripheral vision that address spatial and temporal aspects of our
perception will lead to more efficient image generation techniques
and new applications that will contribute to the final user experience.
With this goal in mind, we presented experiments that investigate
the visibility of temporal changes in the periphery. The stimuli are
chosen with the goal of incorporating multiple characteristics such
as temporal and spatial frequencies as well as eccentricity. These
characteristics are essential to enable the modeling of the perception
of complex content. Using our measurements, we proposed a novel
model that can predict the visibility of temporal fluctuations in com-
plex content. We also discussed and presented examples of possible
applications. While the current model can be already successfully
applied to various computer graphics applications, we hope that
this work will lead to further developments of more comprehen-
sive models which address both spatial and temporal aspect of our
perception across a wide field of view.
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A THE POWER TRANSFORMATION
In order to avoid the mathematical singularity at log(0), instead of
using the standard log-transformation, we use the two-parameter
Box-Cox power transformation on spatial and temporal frequencies
𝑓 :

𝑓 =

{
ln (𝑓 + _2) if _1 = 0,
(𝑓 +_2)_1−1

_1
if _1 ≠ 0,

(13)

where 𝑓 is the transformed frequency 𝑓 . It is also applied to spatio-
temporal sensitivities 𝑆 instead of the standard log transformation,
where it is required. This transformation has a nice property of
keeping zeroes intact in the log domain with _1 = 0 and _2 = 1.

B CROSS VALIDATION OF FUNCTION FIT
We provide 5-fold cross-validation results for our calibration in
Section 5.4 and parameters estimated for each fold in Table 4. We
observe close train and test losses, which suggests that an overfit is
unlikely. In addition, estimated parameter values appear to be stable
between cross-validation folds.

Table 4. Cross validation results of our calibration in Section 5.4.

CV-fold Ltrain Ltest 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5,1 𝑏5,2 𝑏5,3 𝑏6 𝑏7 𝑏8
1 0.122 0.091 1.008 0.208 0.892 0.008 -0.146 0.389 2.952 0.000 0.030 0.054
2 0.119 0.126 1.015 0.140 1.128 0.025 -0.152 0.497 1.988 0.000 0.050 0.055
3 0.119 0.142 1.015 0.176 0.991 0.021 -0.145 0.409 2.241 0.000 0.033 0.049
4 0.107 0.146 1.013 0.123 1.200 0.033 -0.143 0.452 1.856 0.000 0.051 0.055
5 0.102 0.133 1.015 0.161 1.039 0.022 -0.146 0.435 2.179 0.000 0.020 0.064

Mean 0.114 0.127 1.013 0.162 1.050 0.022 -0.146 0.436 2.243 0.000 0.037 0.055
Stdev 0.009 0.022 0.003 0.033 0.120 0.009 0.003 0.041 0.425 0.000 0.013 0.005
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