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Fig. 1. We propose a data-driven method for mimicking haptic feedback of drawing tools. Our method uses fabrication-in-the-loop design enabled by
our data-driven surrogate model which automatically handles exploration-exploitation trade-offs and minimizes the amount of printed samples. The final
stylus-surface combinations are manufacturable on commonly available hardware and can be directly integrated into current digital drawing solutions.

Digital drawing tools are now standard in art and design workflows. These
tools offer comfort, portability, and precision as well as native integration
with digital-art workflows, software, and tools. At the same time, artists
continue to work with long-standing, traditional drawing tools. One feature
of traditional tools, well-appreciated by many artists and lacking in digital
tools, is the specific and diverse range of haptic responses provided by them.
Haptic feedback in traditional drawing tools provides unique, per-tool re-
sponses that help determine the precision and character of individual strokes.
In this work, we address the problem of fabricating digital drawing tools
that closely match the haptic feedback of their traditional counterparts. This
requires the formulation and solution of a complex, co-optimization of both
digital styli and the drawing surfaces they move upon. Here, a potentially
direct formulation of this optimization with numerical simulation-in-the-
loop is not yet viable. As in many complex design tasks, state-of-the-art
methods do not currently offer predictive modeling at rates and scales that
can account for the numerous, coupled, physical behaviors governing the
haptics of styli and surfaces, nor for the limitations and uncertainties inher-
ent in their fabrication processes. To address these challenges, we propose
fabrication-in-the-loop optimization. Critical to making this strategy practi-
cal we construct our objective via a Gaussian Process that does not require
computing derivatives with respect to design parameters. Our Gaussian
Process surrogate model then provides both function estimates and confi-
dence intervals that guide the efficient sampling of our design space. In turn,
this sampling critically reduces the numbers of fabricated examples during
exploration and automatically handles exploration-exploitation trade-offs.
We apply our method to fabricate drawing tools that provide a wide range

Authors’ addresses: Michal Piovarči, Università della Svizzera italiana, Via Giuseppe
Buffi 13, Lugano, 6900, Switzerland, michal.piovarci@usi.ch; DannyM. Kaufman, Adobe
Research, Seattle; David I. W. Levin, University of Toronto, Toronto, Canada; Piotr
Didyk, Università della Svizzera italiana, Lugano, Switzerland.

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3386569.3392467.

of haptic feedback, and demonstrate that they are often hard for users to
distinguish from their traditional drawing-tool analogs.
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1 INTRODUCTION
Drawing and writing are among the oldest methods of recording and
communicating information. While the culture and technology have
evolved, traditional drawing and writing instruments, such as char-
coal, crayons, pencil, ballpoint or fountain pens, remain unchanged
and are still widely used. They are made of different materials and
often used with a different drawing substrate producing a drastically
different style and serving a different application. Each of them also
has specific haptic feedback easily recognizable by professional and
casual users. The relation between the haptic feedback and the tool
is not only appreciated by artists but also used to their advantage
[Annett et al. 2014; Danna and Velay 2015]. The specific haptic
feedback determines the degree to which the artist can control the
tool. While in some cases, less precise control is desired to achieve
less regular strokes; in other cases, excellent control is critical. The
learned by artists relation between the aggregated haptic feedback
of the traditional drawing tools and the stroke shape also allows
them to refrain from relying on precise hand-eye coordination while
drawing.
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Recently, the digital drawing tools (styli and tablets) became an
attractive alternative for many users as they offer comfort, portabil-
ity, and integration with the abundance of new software solutions
that significantly aid the creative process. The most recent software
tools1 enable taking advantage of this digitalization while trying
to maintain the appearance of strokes produced by the traditional
instruments. Unfortunately, as we take advantage of the digital
drawing tools, we also lose the distinct haptic feedback associated
with traditional instruments together with all its advantages. As a
consequence, many artists return to traditional tools when possible.
The haptic feedback of drawing tools is a result of a complex

interaction of the drawing tool with the substrate. The results of
this interaction are transferred to the finger as a resistance to the
movement and vibration. This interaction is governed by multi-
ple coupled phenomena [Blau and Gardner 1996]. The contact of
a drawing tool with the micro-geometry of the substrate produces
a specific frictional response. The friction is further modulated by
the worn material acting as a lubricant. Additionally, the impacts of
cellulose layers of drawing substrate coupled with frictional stick-
slip evoke a vibratory response (Figure 2). In this paper, we tackle
the problem of fabricating digital tools that closely reproduce the
haptic feedback of their traditional counterparts. Unfortunately, as
in many fabrication problems, a direct reproduction of the physics
governing the haptic feedback is not currently a viable solution.
First, the reproduction of drawing surfaces and tools has to respect
the limitations of fabrication techniques (e.g., printer resolution,
material availability). Second, some of the phenomena driving the
haptics of real tools are not desiredable for digital tools. For exam-
ple, it is impractical to make digital tools wear as pencils do or to
introduce a rolling ball lubricated by ink for replicating a ballpoint
pen. As a result, the limitations of the fabrication techniques, as well
as the absence of some physical processes, must be compensated
by modifying other aspects of the digital designs. This leads to a
challenging high-dimensional co-optimization between the stylus
(shape and material) and the surface of the drawing tablet (microge-
ometry and material). In this paper, we reduce the design space to
nine dimensions. This still makes straightforward solutions, such
as random sampling, impractical due to the massive amounts of
designs that would need to be fabricated and evaluated.

WearDeposition

Deformation

Fig. 2. Frictional contact

Finding a set of digital drawing tools
replicating a particular feel can be for-
mulated as an optimization similar to a
typical specification-to-fabrication pro-
cess [Chen et al. 2013]. Such an ap-
proach, however, usually requires effi-
cient and accurate numerical simulation,
which in this case, would simulate the intimate contact between a
drawing instrument and a substrate. However, the complexity of
the coupled phenomenons, the scale at which they occur, as well as
imperfections in fabrication processes pose significant challenges to
simulating all required effects. Accurate simulation of some of the
effects, e.g., the coupling between friction and viscous damping, is
still an open research problem [Chen et al. 2017]. Data-driven simu-
lation techniques [Chen et al. 2015] could potentially aid modeling

1https://www.adobe.com/products/fresco.html

the complex and coupled phenomena. However, building a general
data-driven simulation capable of handling a wide range of digital
drawing tools requires sampling the high-dimensional design space
of stylus-surface interaction.
To address the above challenges, we present a new fabrication-

in-the-loop method for co-optimizing the desired haptic feel of a
stylus-surface combination. We base our method on two key compo-
nents. First, to address the challenging co-optimization, we refrain
from directly matching the properties of the traditional tools (e.g.,
geometry and material). Instead, we optimize the tools based on a
characterization of the haptic feedback given by a recently proposed
perceptual space of drawing tools [Piovarči et al. 2018], which en-
ables focusing on perceptually-relevant tool characteristics. Second,
we employ a fabrication-in-the-loop approach that systematically
explores the space of possible designs in a search for the optimal one.
We minimize the number of fabricated tools by incrementally build-
ing a data-driven surrogate model of haptic feedback. The model is
based on Gaussian Processes [Rasmussen and Williams 2005] and
provides us with confidence bounds on predicted haptic behavior.
Our method uses these bounds to formulate an efficient sampling
strategy that automatically balances the exploration-exploitation
trade-off. Additionally, the surrogate model allows us to transfer the
knowledge between fabrication processes to accelerate optimization.
Thanks to the above approach, our optimization is feasible despite
the time-consuming fabrication process included in the optimization
loop.
We evaluate the effectiveness of our solution in a series of free-

hand drawing experiments performed with casual and professional
users. The results demonstrate that our method enables the fabrica-
tion and customization of digital drawing tools such that they closely
match traditional drawing tools and users’ expectations regarding
haptic feedback. In some cases, our reproductions have proven to
be hard to distinguish even from traditional counterparts, which
is not the case for the state-of-the-art solutions. When compared
to the industrial and research reproduction, our tools outperform
them by a significant margin in all test-cases. The wide range of
fabrication techniques used in our experiments makes our tools
ready for integration with off-the-shelf digital drawing solutions.
To summarize, our main contributions are:

• formulation of perception-driven optimization of target hap-
tic feedback;
• parametrization of a design space for co-optimization of hap-
tic feedback produced by a stylus-surface pair;
• a data-driven surrogate model for predicting haptic feedback
of stylus-surface pairs;
• an algorithm for practical fabrication-in-the-loop optimiza-
tion with an efficient sampling strategy of the design space
that maximizes expected improvement;
• an application of the algorithm to the design of drawing tools;
• validation of manufactured replicas of drawing tools in blind,
free-hand experiments with casual and professional artists.
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2 RELATED WORK
Our work draws inspiration from several research areas, including
haptic feedback reproduction, contact modeling, and fabrication-
oriented optimization. Below, we provide an overview of the most
relevant work from these areas.

2.1 Haptic Feedback Reproduction
Our sense of touch is vital for efficiently navigating both real and
virtual environments [Robles De La Torre 2006]. The vibrations and
forces perceived on our skin enable precise interaction with objects
even without directly looking at them. Unfortunately, replicating a
specific sense of touch using digital devices is still an open and chal-
lenging problem. Most of the haptic devices are active. They range
from Phantoms [Massie et al. 1994] and tactile displays [Hayward
and Cruz-Hernandez 2000; Perez et al. 2017], which apply direct
force using motors and actuators, to micro and electro vibrators
[Bau et al. 2010; Kim et al. 2013], which stimulate the perception
of friction and shape using local vibrations. For a more in-depth
discussion of such devices, we refer to the survey by Chouvardas et
al.’s [2008]. In this work, we do not tackle the general problem of
reproducing haptic feedback but focus on replicating the feedback
of drawing tools using passive devices.

The combination of a drawing tool and a paper creates a unique,
intimate coupling that produces a characteristic haptic response.
The manufacturers of digital devices acknowledge the problem [An-
nett et al. 2014] and address it by providing users a selection of stylus
nibs (Wacom, Microsoft), aftermarket patterned screen protectors
(PaperLike), or using micro-scratched glass surface (reMarkable).
However, realistic reproduction of haptic feedback remains a chal-
lenging open problem [Choi and Tan 2005], which motivates com-
panies to develop solutions that can automatically digitize drawings
(Wacom Bamboo, iSkin) at the cost of the digital convenience.

Researches took an alternative approach and reintroduced the
haptic feedback of traditional drawing tools using vibration motors
[Arasan et al. 2013; Lee et al. 2004; Poupyrev et al. 2004]. To mimic
textures investigated with a stylus-like probe Romano and Kuchen-
becker [2012] proposed a data-driven algorithm where collected
accelerometer data drives a vibration motor connected to a stylus.
They demonstrated the ability to reproduce the haptic response of
a wide range of materials. Building upon this idea Cho et al. [2016]
constructed a stylus with a vibratory and auditory response of draw-
ing tools. Wang et al. [2016] proposed to use electrovibration to
replicate the frictional properties of a stylus. The main limitation
of active modulation is the significant latency introduced by the
mechanical components [Annett et al. 2014; Helps and Helps 2016].
Our passive tools avoid this problem and benefit from providing an
immediate haptic response to the users. Additionally, our tools can
be easily manufactured using available 2D and 3D printers, which
avoids any mechanical and electrical components.
Closest to our approach is the work of Piovarči et al. [2018].

The authors propose a perceptual space of drawing tools which
combined with a data-driven simulation, leads to an optimization
of digital styli. The method can only interpolate between previ-
ously manufactured styli, and therefore, cannot expand the range
of achievable haptic feedback. In contrast, we directly optimize for

both stylus and surface given target haptic feedback. This approach
allows us to match the haptics of traditional drawing tools closely.

2.2 Stylus-Surface Contact Modelling
Different methods and purposes of the application result in drawing
papers with different materials, thickness (weight), and surface
quality. Each of which has typical haptic properties. One possibility
to mimic the drawing substrates is to scan the surface. Either using
a 3D scanner, shape from shading [Prados and Faugeras 2006], or a
capturing system like Gelsight [Yuan et al. 2017]. Afterward, one
can use an appropriate manufacturing method to reproduce the
scanned mesh. However, with average paper roughness of 3 microns
[Fischer et al. 2017] one hits limits of current fabrication hardware.
Moreover, even the perfect reproduction of the surface does not
imply faithful haptic feedback due to complex frictional properties of
the interaction between themanufactured substrate and the drawing
tool.
In computer graphics, the frictional contact is typically limited

to the Coulomb friction model [Harnoy et al. 2008], where fric-
tional force is directly proportional to the applied load. However, in
the context of drawing tools effects like lubrication [Harnoy et al.
2008], wear [Stachowiak 2006], and material deposition [Archard
1953] become relevant. The problem is further complicated by the
coupling between friction and contact with elasticity and viscous
damping [Chen et al. 2017]. Proper frictional modeling under these
conditions is an open area of research [Bertails-Descoubes et al.
2011; Kaufman et al. 2005, 2008], and many of the underlying factors
are still not well understood.

2.3 Goal-based Computational Fabrication
Reproducing desired target behavior is a common goal of compu-
tational fabrication methods. Typically such problems are solved
by formulating an optimization procedure consisting of three steps:
material assignment, numerical simulation, and error estimation
[Chen et al. 2013]. Such design loops have been successfully applied
across many domains, e.g., generation of caustics [Schwartzburg
et al. 2014], elastic properties [Bickel et al. 2010], appearance [Elek
et al. 2017], and sound [Li et al. 2016]. The resulting optimization
problems pose significant computational challenges as the use of nu-
merical simulation often prevents direct computation of analytical
gradients of the objective function. Consequently, many compu-
tational fabrication methods rely on numerical approximations or
more costly stochastic optimization procedures. To make the op-
timizations tracktable, the choice of suitable parametrization of
the design space becomes critical. A good parametrization can sig-
nificantly facilitate the solution of high-dimensional non-convex
problems [Bharaj et al. 2015] or even cast them to convex subspaces
[Piovarči et al. 2017]. Additionally, it may influence the durabil-
ity of the manufactured objects and improve the expressiveness of
the design space [Martínez et al. 2019]. Similarly, in this work, our
problem leads to a non-trivial optimization procedure, where good
parametrization becomes critical for capturing a sufficient range of
haptic feedback produced by stylus-surface interaction.

Apart from the numerical simulations, which make the optimiza-
tion procedure challenging, goal-based computational fabrication
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techniques must also account for the existing limitations of fabrica-
tion devices. For example, when 3D printing objects with prescribed
elastic behavior, a method can only use thematerials available on the
3D printer. A possible solution is to design so-called metamaterials
that approximate the desired behavior not only by varying mate-
rial distribution within the printing volume but also the geometry
[Bickel et al. 2010; Martínez et al. 2016; Panetta et al. 2015; Schu-
macher et al. 2015]. Here we draw inspiration from these works:
instead of creating a carbon copy of drawing tools, we focus on
designing tools that obtain similar behavior.

2.4 Gaussian Processes and Active Learning
Minimizing costly and difficult-to-evaluate error functions, which
are common in computational fabrication, is an open and challeng-
ing problem [Nocedal and Wright 2006]. One solution is to replace
the expensive function with a cheaper but effective surrogate, see
e.g., [Jones et al. 1998]. A particularly popular option of the surro-
gate model is Gaussian Processes [Rasmussen 2004], which not only
provides derivative information but can also be used to estimate the
certainty of the prediction. This certainty estimate can be exploited
by formulating an acquisition function that samples the surrogate
model to maximize the information gain with each sample [Frazier
et al. 2009; Hennig and Schuler 2012; Mockus 1989]. Our work builds
upon these ideas and adopts them in the context of computational
fabrication by proposing a custom acquisition function suitable for
haptic reproduction.

Our fabrication-in-the-loop approach draws inspiration from ac-
tive learning, where the learning process is enhanced by engaging
users to label new data-points iteratively. Also here, surrogate mod-
els like Gaussian Processes are often used to generate the datasets
presented to the participants [Akrour et al. 2011; Dudley et al. 2019;
Koyama et al. 2017]. Our method can be seen as an instance of active
learning where the user queries are replaced by an oracle based on
physical manufacturing and measurements of samples generated
based on a surrogate model formulated using Gaussian Processes.

3 OVERVIEW
The goal of our work is to formulate an optimization procedure
for digital drawing tools (i.e., drawing surface and stylus) such that
they provide desired haptic feedback. We start by formulating the
low-dimensional design space of the tools, which describe both a
wide range of styli (Section 4.1) and drawing surfaces (Section 4.2).
To measure the error between different designs, we employ a per-
ceptual metric for drawing tools (Section 5.1). To evaluate the error,
we propose a fabrication-in-the-loop approach where we use a data-
driven surrogate model (Section 5.2). We build the model to handle
the stylus-surface co-optimization (Section 5.2.3) and include trans-
fer learning to accelerate optimization of unobserved fabrication
processes (Section 5.2.2). To minimize the fabrication effort, we
propose an acquisition function that efficiently explores the design
space by automatically handling the exploration-exploitation trade-
off (Section 5.3). We demonstrate how our model can be used to
optimize for the desired interaction of a stylus-surface combina-
tion (Section 6). We validate our method by comparing with naive
approaches and observing the quality of our manufactured tools

(Section 7). Additionally, we compare our method in a series of free
drawing user studies. In blind experiments, we demonstrate that our
tools can model target haptic feedback, (Section 8.2), are preferred to
state of the art approaches (Section 8.3), and produce realistic haptic
sensations (Section 8.4). Finally, we evaluate our reproductions in a
survey with professional artists (Section 9).

4 PROBLEM MODELING
The parametrization of our drawing tools has to provide durable and
manufacturable tools. It also has to allow for achieving a wide range
of haptic feedback. We reach these goals by taking inspirations from
traditional drawing tools and numerical simulation.

4.1 Stylus Parametrization
A drawing stylus design can have many degrees of freedom, which
define the shape of the stylus, drawing nib, and the material from
which these parts are manufactured. To investigate the importance
of different parameters, we used numerical simulation and per-
formed modal analysis on differently shaped styli made of different
materials. The analysis revealed a significant influence of material
on vibrational modes but little influence of the overall shape of the
stylus. To decrease the fabrication time and remain consistent with
commercial styli we treat the body of the stylus as made from a
rigid material. Consequently, we do not consider the entire stylus
for our optimization and focus on the nib, which directly interacts
with a drawing surface. We assume that the shape of the nib is a
cone with a hemispherical tip of radius r . Also, it is made of one
homogenous printing materialm (Figure 3).

rm

5 mm10 mm140 mm 5 mm

Fig. 3. The modular design used for our styli (left). The replaceable tip can
be made of different materialm and have a different radius r . A picture of
a manufactured stylus (right).

Fabrication. We fabricate our styli using Formlabs Form 2 printer
with Black and Flexible resin. To produce durable styli, we limit
the radius r of the tip to be within 0.5 mm and 2 mm. We vary the
material by mixing the two resins with a continuous ratio of m.
Pre-mixing the materials ensured a smooth blend between them and
the durability of the print. To minimize the printing time, we also
designed the styli as nibs that fit into a universal holder (Figure 3).

4.2 Surface Parametrization
We inspire the parametrization of the drawing surfaces by first
performing imaging of several drawing substrates (office paper,
rough paper, and smooth stone paper) using the Gelsight system
[Yuan et al. 2017]. The scans (Figure 4) reveal that the geometry
of each substrate is governed by the distribution and thickness of
the cellulose fibers. Despite the locally anisotropic structure, fibers
create an isotropic substrate on a global scale. This is important
at low drawing speeds when the local anisotropy becomes more
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apparent. Additionally, the surfaces manifest very small variation
in height (approx. five microns).

Office Paper Rough Paper Stone Paper
500 μm 500 μm 500 μm

Fig. 4. Gelsight scans of drawing substrates used in our experiments.

To capture the character of traditional drawing surfaces, wemodel
our surfaces as a heightfield defined by a noise generated using
isotropic Gabor kernels [Lagae et al. 2009]. Isotropic Gabor kernel
behaves similarly to the anisotropic variant but has random orien-
tation at each spatial location, which creates a globally isotropic
but locally anisotropic surface. We parametrize our surfaces in the
power spectra domain where a single isotropic Gabor kernel is rep-
resented by a radial Gaussian, thus requires only three parameters:
frequency, amplitude, and standard deviation. To model our surfaces,
we consider two Gabor filters [Lagae et al. 2011] resulting in six
parameters. Since no single fabrication process can cover the entire
gamut of drawing tools, we add a categorical parameter to model the
manufacturing procedure. To produce our substrates we consider
three options: 2D inkjet printing on a transparency sheet, the same
process ink-jet where now the printed structure is additionally cov-
ered with a fixative spray, and a FormLabs printer with transparent
rigid material. Each surface is also scaled and quantized according to
the thickness of the printing layer. The scaling is another parameter
we included in our optimization.

Fabrication. We fabricate our surfaces using a 600 dpi Canon
i-SENSYS LBP6780x and Formlabs Form 2 printers. The laser-jet
printer uses a plain transparency sheet as the substrate and prints a
single ink layer. As an optional post-processing step, we spray the
transparency sheet with a fixative spray to increase the friction of
the surfaces. We quantize the Gabor noise using the layer height
of each manufacturing process. We measured the ink layer to be
approximately 8.5 microns thick. We use the Formlabs printer to
manufacture surfaces with 25-micron layers of rigid, transparent
material. Figure 5 shows surfaces generated with our method.

12
.8

 m
m

Fig. 5. Sample surfaces from our parametrization quantized to one layer.

5 EFFICIENT FABRICATION-IN-THE-LOOP
OPTIMIZATION

Given the parameters of our digital drawing tools, i.e., the radius
and the material of the stylus tip, six surface geometry parameters,
the manufacturing method of the surface, and the scaling parameter,
we seek an efficient optimization which finds the combination of
digital stylus and surface replicating desired haptic feedback.

A traditional approach to such a problem is to formulate an op-
timization procedure guided by numerical simulation. We have
experimented with FEM-based frictional contact models by incre-
mentally building an accurate numerical simulator. Unfortunately,
as we were adding support for different phenomena to achieve the
required accuracy, the simulation became prohibitively expensive
to use in an optimization loop. Based on this investigation, we con-
cluded that due to the complexity of the phenomena we need to
model as well as imperfections introduced in the fabrication process,
the investigated simulations do not provide sufficient efficiency and
accuracy. Interestingly, the time required for simulating our designs
exceeds the time needed for fabricating and measuring them. In-
spired by this observation, we propose to incorporate fabrication
proces directly into the optimization loop. This design decision
leads to a gradient-free black-box function optimization that can-
not be efficiently solved using methods that densely sample the
design space, e.g., stochastic optimizations. Instead, we propose a
data-driven model based on Gaussian Processes, which allows for
efficient sampling of the design space, and therefore, minimizing the
number of samples that have to be fabricated and measured before
reaching the optimal solution.

5.1 Haptic Feedback Similarity
Before formulating the optimization, we need to definewhat the goal
of the optimization is. Haptic feedback is a complex phenomenon,
and it is unclear how to evaluate the similarity between different
tools. Here, we leverage recent work by Piovarči et al. [2018], where
the authors investigate the perception of haptic feedback induced
by drawing tools and discover two primary cues used to distinguish
between tool-surface combinations: Coulomb friction between the
drawing tool and substrate, and a velocity-dependent spectrogram
of vibratory feedback. To recover these properties the authors pro-
pose a custommeasurement setup2 where a drawing tool is placed in
a unified holder and the interaction with a substrate is automatically
measured. The authors proposed a likelihood-based optimization
that correlates perceived friction with Coulomb friction and per-
ceived vibration with the mean value of the spectrogram across
frequency and velocity. The two perceived quantities define a per-
ceptual space where the similarity between tool corresponds with
Euclidean distance. In order to objectively verify the quality of our
reproductions, we extend this perceptual space by recovering the
Just Noticeable Difference (JND) units [Fechner 1860]. We define
1 JND as a difference between two stimuli which can be detected
with a 75% chance. To compute the JND units we analyze the study
conducted by Piovarči et al. [2018]. During the study, participants
were presented with a mixture of traditional and 3D printed drawing
tools. The experiment design was a two-alternative forced-choice
experiment, where one tool serves as a reference and two tools as
possible reproductions. The task was to pick the reproduction that
is more similar to the reference. The outcome of the study is the
probability of preferring one tool over another. We utilize these
probabilities and optimize for two scaling factors for friction and
vibration respectively such that the resulting JND conforms to the
psychophysical studies conducted by Piovarči et al.

2misop.github.io/Perception-Aware-Modeling-and-Fabrication-of-Digital-Drawing-Tools/
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5.2 Gaussian Process Surrogate Model
The input to our optimization is a characterization of haptic feed-
back based on the perceptual space: Coulomb friction and average
vibratory feedback. The output is a stylus and surface design from
our parametrization which can be directly manufactured. To eval-
uate the perceived difference between our designs and the target
haptic behavior we rely on minimizing the Euclidean distance in
a perceptual space of haptic feedback which requires physically
manufacturing and measuring the sample. Since the manufacturing
process is expensive (both time and cost-wise) and derivative-free
we propose to utilize a data-driven surrogate model. The input to the
model is a design from our parametrization and previously observed
designs. The output is predicted perceived haptic feedback based on
the data evidence. The model is based on two building blocks. The
first block is an efficient approximation of the objective function
which can be evaluated quickly and provides confidence bounds on
the prediction. The confidence bounds are a key element to build the
second block which is an acquisition function that searches through
the input design space. By incorporating the certainty of prediction
we can automatically handle the exploration-exploitation trade-off
during optimization.
To incorporate confidence in the prediction we first have to as-

sume the uncertainty of the data. To this end, we model the mapping
from design space to measurements with uncertainty explained by
a Gaussian distribution. Assuming normality of the distribution is
key in formulating an efficient analytical solution to predict and
sample new designs. Under such an assumption, each predictor is
considered to be a random variable with multi-variate Gaussian dis-
tribution. The Gaussian Process is then the joint distribution of the
observed variables on an infinite continuous domain. A Gaussian
Process is itself a normal distribution and can be parametrized with
a mean and a covariance matrix. The infinite domain of the Gaussian
Process allows us to express predictions of unobserved designs. To
achieve this we formulate the covariance matrix as a kernel on a
continuous domain. The kernel function defines how strongly is a
design correlated with our previous observations. The correlation
typically smoothly varies across the domain. By aggregating these
correlations for all observed data we can predict the location of a
design point as a normal distribution giving us both the predicted
value and confidence intervals on the prediction.

In our setting the problem is further complicated by introducing
a categorical variable. The smoothness assumptions imposed on the
kernel function require special treatment of categorical variables.
Therefore, we seek two predictors on perceived haptic feedback:
one based on surface parametrization κ1 and one based on the
manufacturing process κ2. By multiplying these two predictors we
create a predictor of haptic feedback κ that smoothly varies across
all dimensions. The predictor κ is calculated as:

κ(x, x′) = κ1(x, x′) ∗ κ2(x, x′), (1)

where x is a design point we wish to predict, and x′ is an observed
data point. The data points x = [t, s,k], where t is a vector of
stylus parameters, s is a vector of surface parameters, and k is the
manufacturing process.

5.2.1 Predicting Stylus-Surface Haptic Feedback. The Gaussian
Process takes as an input our stylus-surface parametrizations and
predicts the perceived haptic feedback. This prediction is guided by
the covariance kernel which imposes smoothness assumptions on
our predictor. There is a range of kernel functions that were devel-
oped based on different applications (Exponential kernel, Matern 3/2
kernel, Matern 5/3 kernel, and their Automatic Relevance Determi-
nation (ARD) variants [Rasmussen and Williams 2005]). To identify
an appropriate kernel function we designed a test case. We used
the measurements collected by [Piovarči et al. 2018] for 3D printed
tools on paper substrates. Then we projected the substrates into our
parameterization. We use cross-validation to optimize for a model
that best explains the observed data. Based on the cross-validation
results we select the ARD Matern 3/2 kernel:

κ1(x, x′) = σ 2
f (1 +

√
3rκ )e−

√
3rκ , (2)

rκ =

√√√ D∑
i=1

(x j − x
′
j )
2

σ 2
i

, (3)

where, D = 9 is the dimensionality of the predictor. σf is the signal
standard deviation of our data which defines how certain we are
about observed predictions, and σi is the characteristic length scale
different for each dimension. The characteristic length scale defines
at which range values are correlated with observed measurements
and is set by fitting the Gaussian Process into observed data using a
L-BFGS optimization [Nocedal and Wright 2006]. Larger values lead
to smoother functions and smaller to functions with faster variation.

5.2.2 Transfer Learning Between Fabrication Processes. The em-
ployed parametrization is not bound to a particular manufacturing
process. Introducing new manufacturing processes will have an ef-
fect on the perceived haptic feedback. On the one hand, each process
will produce different frictional and vibratory feedback for the same
surface. On the other hand, it is reasonable to believe that trends in
feedback change would remain similar across fabrication processes.
Therefore, we would like to encode categorical variables in a way
that exploits observed data when few observations of the category
were made but once available favors predictions made using the
data gathered from the category.

To model this behavior we first encode the categorical variables
using one-hot encoding [Garrido-Merchán and Hernández-Lobato
2020]. Next, we use an ARD kernel [Neal 1996]:

κ2(x ,x
′) = exp ©­«−12

K∑
j=1

1
σ 2
j
(x j − x

′
j )
2ª®¬ , (4)

whereκ2 is the kernel function,K is the number of categories, and σj
is the characteristic length parameter. By optimizing for the length
parameter σj we can tweak the effect of individual categories. We
can see the effect of multiple categories on an example (Figure 6).
For cases where data about a category are sufficient, we can use
σj → ∞ leading to effectively no transfer of knowledge. On the
other hand, if we do not have sufficient data about a category a lower
sigma will appropriately scale the predictions of other categories.
One disadvantage of our approach is that for unobserved categorical
parameters we can not predict their expected behavior. Instead, to
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include a new category i.e., a new fabrication process we initialize
the category with a single measurement which will be used to find
a first estimate of the mixing ratios.

Category 1 Category 2

Samples Ground Truth Prediction

with one sample
Category 2

with multiple samples

Fig. 6. A one-dimensional example of information transfer between multiple
categories. The estimate of category 1 (left) is used to improve prediction in
uncertain regions of category 2 (middle). With more samples the prediction
is weighted towards observations of the new category (right).

5.2.3 Friction and Vibration Prediction. In our setting, we are
interested in jointly predicting the frictional and vibrational re-
sponse of a tool and surface combination. In the context of Gaussian
Processes the joint prediction can be formulated by stacking the
Gaussian Processes explaining individual responses into a single
multivariate-normal distribution N which can be written as:[

F
V

]
= N

( [
0
0

]
,

[
KF a
a KV

]
+

[
σ 2
F I 0
0 σ 2

V I

] )
, (5)

where F , V are predicted friction and vibration respectively, KF ,
KV are their corresponding correlation matrices, and σF , σV is the
noise of prediction in each Gaussian Process, and a defines the
correlation matrix between the two predicted values. The kernel
function for a has to be carefully selected. Poor selection imposes
unwanted structure on the problemwhich leads to poor performance
[Bonilla et al. 2008]. To select the appropriate kernel a we can use
an interesting property of the formulation. If at each parameter
value we have noise-free observations for both predicted values
then the shared information between the predicted values vanishes.
The intuition behind this observation is that by first decorrelating
the response variables by a we can estimate the relationship as the
covariance of the decorrelated data. For detailed derivation please
see [Bonilla et al. 2008].
We assume that the bulk of the cost is in fabrication (stylus and

surface). Measurements for friction and vibration are both fast and
it is feasible to recover both functional values for each predictor.
Therefore, to gain useful information from cross-correlation we
would need significant noise in the measurements. To evaluate the
experimental noise we repeated measurements for a ballpoint pen.
We found a 0.3 JND standard deviation on the placement of the tool
in the perceptual space which is too small to be noticeable. Based on
the findings we conclude that the modeling can be done separately
for friction and vibration. This means we set a = 0 and we have
two separate Gaussian Processes: one predicts perceived friction,
the other perceived vibration.

5.3 Acquisition Function
Efficient sampling of the design space is the most crucial factor
in quickly optimizing an expensive function. To this end, at each
manufacturing step, we would like to produce the sample that either

brings us closest to target or provides the most information to im-
prove our surrogate model. The Gaussian Process surrogate model
enables us to predict the expected behavior of a tool-surface com-
bination with confidence bounds. We can exploit these confidence
bounds to formulate an acquisition function of new measurements
that maximize the expected improvement of our model towards a
target behavior.

The input of the acquisition function is the desired haptic behav-
ior. The output of the function is a new stylus-surface design which
maximizes the expected improvement towards the target behav-
ior. Unlike traditional minimization problems, we are interested in
finding a specific value of a two-dimensional function, (Equation 5),
rather than its minima. One option would be to directly estimate
the distance to our target with the surrogate model. However, the
probability as a function of distance to the target can not be modeled
by Gaussian Processes. To address this issue we reformulate the
improvement as a two-dimensional distance minimizing function.
At each sample point we seek to estimate the function:

u(x) = max(0,d∗ − (NF (x) − F )2 − (NV (x) −V )2), (6)

T

P*

d*

Friction

Vi
br

at
io

n

Improvement

v

Probability of improvement

Fig. 7. Acquisition function

where d∗ is the square distance between
target and current best estimate, NF (x)
andNV (x) are the estimated friction and
vibrational behavior respectively and, F
andV is the target friction and vibration
respectively.

The problem is visualized in Figure 7.
The current best estimate P∗ defines a
circle around the target T with radius
d∗. Designs within this region have ex-
pected improvement larger than zero.
Since our predictor variables are defined
as Gaussian distributions we can not simply evaluate the value of
the improvement function. Instead, we have to estimate its expected
value which can be formulated as a double integral over the design
space weighting functional values by their probability of occurring.
As an illustrative example to evaluate the expected improvement
of design with fixed vibration v we predict the friction as a Gauss-
ian distribution (Figure 7 gray). The expected improvement then
includes the frictional values (Figure 7 orange) located within the
integration bounds multiplied by their probability (Figure 7 blue).
In order to formulate an analytical version of the integral, we need
to set tight integration bounds which allow us to implicitly handle
the max operator. A definite double integral integrates over a rect-
angular subspace (Figure 7 dashed). We set this subspace to be the
inscribed square of the circle which defines the area of possible im-

provement by setting d =
√

d∗
2 . The integral then has the following

form: ∫ V+d

V−d

∫ F+d

F−d
(d∗ − (x − F )2 − (y −V )2)pxpy dx dy, (7)

where px and py is probability of predicting frictional and vibra-
tional value respectively. The analytical solution of this integral is
described in the Supplementary Material.

Constraining the integration region encourages exploration and
prevents the over-exploitation of observed data. Additionally, it is

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



1:8 • Michal Piovarči, Danny M. Kaufman, David I. W. Levin, and Piotr Didyk

possible to modify the trade-off by adjusting the means of each
predicted distributions. By moving the means closer towards the
target the acquisition function prefers to exploit the data and search
for local minima of the function. Conversely, by moving the means
further away from the target we encourage exploration of uncertain
regions in the surrogate model.

5.3.1 Practical Consideration of Varying Fabrication Time. An
interesting property of manufacturing processes is that modification
of different parameters can lead to a non-constant change in manu-
facturing time, e.g., time difference betweenmodifying the geometry
of a single layer and printing at a higher resolution. In such cases, a
small change in parameters can lead to a significant increase in time
while providing minimal gain. It is possible to include the effects of
different time costs for parameter change in the acquisition function
by weighting the expected improvement by the manufacturing time.
However, in case of extreme time differences, the weight would
get unbalanced and the acquisition function would over-explore
the parameters with lower time costs. The unbalanced time factors
could be solved by adding a constant to each manufacturing process.
However, the constant depends on the specific setup and has to be
manually tuned.

Instead, we propose to utilize another property of the fabrication:
the ability to fabricate designs in parallel. Every time one of our
manufacturing devices is free we generate a new design with the
current state of the surrogate model. When one fabrication process
is significantly faster it is naturally explored more. The fast parallel
updates to the surrogate model can be utilized to more efficiently use
the slower manufacturing process. It is possible that after a number
of fast iterations we find a new design with better performance
than the one being manufactured. In such a case, we can use the
expected improvement over time to evaluate the payoff of stopping
the current print and starting a new one. The ability to stop prints
that no longer provide any value before they finish enables us to
more efficiently incorporate different fabrication procedures into
our design.

6 APPLICATION TO STYLUS-SURFACE DESIGN
We use our surrogate model to explore the design space of stylus-
surface interaction by manufacturing. Due to differences in our
fabrication processes a stylus design takes significantly longer to
manufacture than a new surface.We incorporate this knowledge into
the design of our optimization loop by optimizing for new styli and
new surfaces in parallel, (Pseudocode 1). To perform one iterationwe
start by fitting two Gaussian Processes: one for frictional response
and one for the vibrational response of our designs. Next, we search
for a new tool to print given our set of available substrates S by
maximizing the expected improvement defined in Equation 6:

max
t,i

u(t, si ), si ∈ S, (8)

where t is the parametrization of the stylus, and si is a surface from
the surface set S. If the time-weighted expected improvement is
larger than the currently printing design we start to print the new
design.

Next, we seek a new surface given our set of available styli T .
We search for the surface by maximizing:

max
s,i

u(ti , s), ti ∈ T , (9)

where s is the parametrization of a the surface, and ti is a tool
from tool set T . To maximize the expected improvement we use
a genetic algorithm [Conn et al. 1991]. These two optimization
steps are repeated until we reach an acceptable reproduction with a
JND bellow 0.3. We can see the behavior of our optimization on an
example in Figure 8.

ALGORITHM 1: Perceptual Optimization Pseudocode
Data: T = target behavior
Data: o = observations
while true do
NF (x ) ← gaussian_process(friction(o));
NV (x ) ← gaussian_process(vibration(o));
t = pick new tool by solving Equation 8;
if not printing or tool has better improvement then

print new tool;
end
s = pick new surface by solving Equation 9;
m = measure new tool;
o add [m, s] pair to observations dataset;
if | |T − Perceptual (m) | | < 0.3 then

done;
end

end
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Perceived Friction

Surface Optimization

Target

Stop print because better sample was found

Time
Surface 1 Surface 2

Stylus Optimization Stylus 1 Stylus 2

Surface 1

Stylus 1

Stylus 2

Surface 2

Fig. 8. Example of parallel execution of stylus and surface manufacturing.
In the first iteration, we manufacture a surface and enhance our data-driven
model. The model then predicts which tool we should print to best match
the target. We prepare the print for the tool and while the tool is printing
we optimize for a new surface. The new surface causes an update to the
surrogate model which results in a new suggestion for a stylus to print.
Since the printer is currently occupied we compare the tools based on their
expected improvement over time. We find that the expected improvement
of the new tool outweighs the difference in printing time. Therefore, we
stop the current print and prepare the new tool. In order to verify that
the model prediction was correct, we manufactured and measured both
styli. We can observe that the newly predicted stylus indeed achieved better
improvement.
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6.1 Reliability Test
Our data-driven surrogate model needs a warm start with a set
of measurements. To generate the initial sampling we considered
six initial styli and surface designs resulting in a total of 36 ini-
tial measurements. As manufacturing process we use the laser-jet
printer with a transparency substrate. We pick styli parameters that
uniformly sample the design space with three radii (0.5, 1, 2 mm)
and two materials (black, and flexible), Figure 9 left. The initial sur-
face designs were generated automatically using random sampling,
Figure 9 right. We measured each initial design and found their
appropriate placement in the perceptual space of haptic feedback,
(Figure 10 left). We can observe that our initial sampling provides
good coverage of tools with lower perceived friction.

Initial Pen Designs Initial Surface Designs 12.8 mm

Fig. 9. Pen and surface designs used to initialize the surrogate model.

To verify the effect of initial sampling on our optimization we
removed the initial surface which provided haptic response close
in the perceptual space to a ballpoint pen. We selected this design
because it lies within the gamut of traditional drawing tools and
is relatively isolated. This isolation requires the optimization pro-
cess to explore the design space and not rely on already observed
samples. The optimization process required 9 iterations to reach a
satisfactory close reproduction (Figure 10 right). Please note that
the optimization includes exploration of the design space and does
not behave like gradient descent. An interesting observation is that
the new optimized surface is very similar to the removed design.
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Initial Sampling Our Optimization

Fig. 10. Initial samples measurements are shown on the left. We can observe
that initial sampling can capture a ballpoint pen on office paper. We verify
our algorithm by removing the surface from initial sampling and optimize
for the same tool, right.

6.2 Optimizing Haptic Feedback
To demonstrate the capability of our method to efficiently model
the behavior of drawing tools we optimize stylus-surface replicas
of four traditional tools from the perceptual space: 2H pencil on
stone paper, 8B pencil on stone paper, ballpoint pen on rough paper,
and charcoal on rough paper. We opted for these tools due to their

variety of haptic responses which covers well the gamut of haptic
feedback provided by traditional tools.
Our initial sampling already provides a faithful reproduction of

the 2H pencil, (Figure 11 2H pencil). We use our surrogate model to
optimize for the haptic feedback of an 8B pencil on stone paper, (Fig-
ure 11 8B pencil). The optimization converges within one iteration
to a satisfactory solution. Next, we optimize for the ballpoint pen
on a rough surface. The surrogate suggests printing a new tool with
a radius of 0.5 millimeters composed of 14% black material and 86%
flexible material. During printing time the optimizer was suggesting
five surface designs that could not achieve satisfactory vibrational
feedback. Once the new tool was printed we measured it using the
original surface for which it was suggested. Afterward, it took the
optimizer 4 steps to converge to a satisfactory solution, (Figure 11
ballpoint pen). Finally, we optimize for the haptic feedback pro-
duced by charcoal on rough paper. Since the friction of charcoal is
significantly higher than what is achievable by the ink-jet printer
we change the fabrication method to a 3D printer. We initialize
the new fabrication process by manufacturing and measuring a
design which was closest to charcoal from original sampling. After-
ward, we use the optimizer and find a satisfactory reproduction in 3
steps, (Figure 11 charcoal). The resulting optimized stylus-surface
combinations are shown in Figure 12.

2H Pencil 8B Pencil Ballpoint Pen Charcoal

R
ea

l
O

ur

Stone Stone Rough Rough

Fig. 12. Four traditional drawing tools (top) and their optimized digital
counterparts (bottom). We show both the optimized stylus and the Gelsight
scan of the optimized surface. Please note that our surfaces do not match
the original substrates yet manifest the same haptic response.

The timing of one iteration loop is a combination of predicting a
new sample, manufacturing the design, and measuring. The predic-
tion of new designs takes an average of 2 minutes. Manufacturing
depends on the selected method fabrication method. For surface
fabrication, we use an inkjet printer, fixative, and a 3D printer. The
inkjet printer is the fastest and takes about 60 seconds. The fixative
agent is applied on the inkjet-printed surface and takes about 15
minutes to dry, and lastly 3D printing a new surface takes about 3
hours. A similar fabrication time is required to 3D print a new pen
design. Lastly, the measurement itself takes about 15 minutes.

6.3 Gamut of Haptic Feedback
Estimating the gamut of haptic feedback achievable through differ-
ent fabrication processes is advantageous during design and allows
us to quantify the expressiveness of our design space. To quantify
the gamut we cannot rely on a parameter sweep. The non-linearity
and high dimensionality of our space would require a far too great
number of samples to be practical. Instead, we use our surrogate
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Fig. 11. Results of optimizing haptic feedback using our surrogate model. Black samples mark original perceptual space. Blue samples are sample surfaces
used to initialize the model. The red color is the position of a tool we would like to reproduce. Dark green dots mark the path our optimizer took in the
perceptual space to find the final reproduction (light green).

model to acquire an estimate of the gamut. To contrast our digital
styli with traditional instruments we use the gamut recovered by
Piovarči et al. [2018] (Figure 13 black) that is composed of various
drawing tools and substrates.

By searching for the convex hull of haptic feedback of traditional
drawing instruments we recovere a good estimate of haptic feedback
achievable by our laser-jet printer with a transparency substrate. For
visualization we marked the gamut as a convex hull, (Figure 13 blue).
To estimate the haptic feedback achievable by a new process we
took the surface-stylus combinations forming the convex hull of our
laser-jet process and manufactured them using the fixative and 3D
printer. Due to frictional and vibrational coupling, the mapping of
haptic feedback between surfaces is not a simple transformation of
the space. To further explore the gamut of haptic feedback of the new
processes we, therefore, use our optimization. We expand the gamut
of the new processes by optimizing for traditional drawing tools
outside of the approximate convex hull. We can see the optimized
gamuts of haptic feedback in Figure 13. Each manufacturing process
is capable of achieving satisfactory vibrational feedback. In terms of
frictional feedback, the best performing process is a transparency
sheet covered with a fixative agent that covers almost the entire
gamut of traditional drawing tools.

6.4 Universal Drawing Surface
We demonstrated that our algorithm can generate stylus-surface
combinations designed to reproduce a specific drawing instrument.
For practical purposes, it is typically easier to manufacture a device
with a single surface and use multiple nibs for the stylus to cus-
tomize the haptic feedback. We use our surrogate model to optimize
for a surface pattern that can capture the largest coverage of the
perceptual space of drawing tools. Our fabrication method of choice
is the transparency sprayed with fixative as its gamut encompasses
the entire perceptual space.

The input to our function is an area of haptic feedback we would
wish to reproduce. The output is a surface design that can capture
the largest cross-section of the input area given our toolset T . Since
we seek to find a surface that manifests different haptic feedback
for many styli we can not rely on the acquisition function of our
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Fig. 13. The gamut of haptic feedback achievable by our different man-
ufacturing processes: laser-jet on transparency sheet (blue), laser-jet on
transparency sheet with fixative (red), 3D printer (green) compared with
traditional drawing tools (black).

surrogate model. Instead, we use the surrogate model to estimate
the expected haptic feedback achievable on the surface as:

E[s] = ConvexHull({NFi (s),NVi (s)}), (10)

where s is the parametrization of the surface,NFi (s) andNVi (s) are
the Gaussian processes predicting friction and vibration of tool i
from the toolset T on the surface s respectively. ConvexHull es-
timates the convex hull of haptic feedback achievable by the sur-
face. Based on experiments performed by Piovarči et al. [2018] we
assume that the haptic feedback between individual styli can be
interpolated linearly. Since we would like to produce realistic hap-
tic sensations we set the input area to the convex hull of haptic
provided by traditional drawing tools. To find a universal drawing
surface we maximize:

max
s

Intersect(input ,ConvexHull({NFi (s),NVi (s)})). (11)
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The function contains an estimate of the expected intersection area
that we calculate using Monte-Carlo evaluation. The functional is
then maximized using LBFGS method [Nocedal and Wright 2006].
We can see the results of the optimization in Figure 14. We stop

the optimization when the next sample has both predicted and mea-
sured coverage within 0.1% of the previous iteration. The algorithm
converged within 4 iterations. The main difference between itera-
tions 3 and 4 is in the type of haptic feedback provided. The surface
from iteration 3 provides less vibratory feedback than the surface
from iteration 4. Additionally, there are two interesting observations
about iteration 4. The surfaces optimized by our method are always
slanted. This is a result of using various materials. On one hand,
hard plastic has the tendency to produce more vibration but also
glides smoother on the surface. On the other hand, rubbery material
damps the vibratory feedback and creates more friction with the sur-
face. The second interesting observation is the final surface which
contains larger spacing between features. The large spacing directly
interacts with tip size. A small tip takes longer to hit a new feature
and therefore has less vibratory feedback. Conversely, a large tip is
hitting the surface features more often and create an illusion of a
rougher surface.

Perceptual Space Surface Coverage
Coverage 4% Coverage 10% Coverage 30% Coverage 32%

Iteration 1 Iteration 2 Iteration 3 Iteration 4

12
.8

 m
m

Fig. 14. Four iteration of optimal surface optimization.

7 COMPARISON AND EVALUATION
To evaluate the quality of our optimization we perform a series
of tests. First, we compare our method with naive surface repro-
duction and show that special care has to be taken to optimize the
stylus-surface haptic feedback. Next, we evaluate the quality of our
reproductions by comparing raw measurements. Finally, we investi-
gate the optical properties of our surfaces and their suitability for
direct application on tablet screens.

7.1 Comparison With Geometry-Inspired Baseline
We designed an algorithm that can generate stylus-surface combina-
tions with a desired haptic response. It is possible that similar haptic
feedback of traditional tools could be also achieved by reproducing
the geometry of the paper substrate. To verify this approach we
approximate a manufacturing pipeline by scanning the rough paper
sample with the Gelsight system. The sample showed a peak to
peak variation of 10 microns, (Figure 15 left). Such extreme resolu-
tion is well beyond the capabilities of our manufacturing hardware

[Sitthi-Amorn et al. 2015]. However, it is still possible to modify
the surface to make it printable by scaling the height-field. To not
alter the frequency of the surface features we scale only along the
Z-axis. Next, from the measured height-field, we generated a till-
able surface [Embark Studios 2019]. To validate the quality of the
reproduction we manufactured the surface on transparency and 3D
printing substrate at different scaling factors, (Figure 15 right, red
and blue respectively). We then measured the perceived haptic feed-
back on the substrate by using a ballpoint pen. We plot the different
measurements as paths signifying the effects of scaling on haptic
feedback. We can observe that both reproductions generate different
paths in the perceptual space. As we scale up the transparency film
we first observe an increase in vibratory feedback which is later
followed by a decline. This is a result of the transparency sheet
saturating with the ink. On the other hand, the 3D printed surface
can scale arbitrarily high so the haptic feedback keeps increasing.
The minor dip observed is caused by the first layer saturating.
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Fig. 15. Results of surface reproduction of a ballpoint pen. The scanned
height-field (left) and measured haptic feedback (right) form paths in per-
ceptual space parametrized by the scaling factor.

7.2 Measurements of Tool-Surface Combinations
The perceptual space uses an aggregate value to represent the mea-
surement of vibration. This step was motivated by Piovarči et al. due
to the overall velocity-independent broadband response of tradi-
tional drawing instruments. Our 3D printed designs could poten-
tially violate this assumption. If so this could result in a perceivable
difference due to a clear frequency shift when compared to a tra-
ditional instrument. We show the original and reproduced spectro-
grams in Figure 16. We can observe that the 3D printed surfaces
achieve very similar vibratory response as the original instruments.
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Fig. 16. Vibration measurements of original drawing instruments and their
3D printed counterparts.
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7.3 Optical Properties of Generated Patterns
The optical properties of the generated pattern are important for
applications on graphical tablets with displays. To verify the image
quality of our screens we manufactured our optimized charcoal
reproduction design using a clear resin. We then placed the surface
on an LCD screen with a checkerboard pattern (Figure 17). We
can see that the pattern has similar properties to a diffuse screen
protector. The surface geometry creates more significant distortion
which is a trade-off for achieving desired haptic properties.

Glossy Display Matte Screen Protector Our Surface

Fig. 17. Visual properties of our surface evaluated by taking photos of an
LCD screen displaying a checkerboard pattern.

8 EXPERIMENTAL VALIDATION
Our method heavily relies on the applicability of the perceptual
space to solve a non-trivial optimization problem. Such an approach
requires careful verification in user experiments. To this end, we
start by evaluating peoples’ ability to recognize different traditional
tools. Next, we compare our tools to current commercial and re-
search solution as well as a baseline solution which attempts repli-
cated material and geometry for drawing tools. We also compare
our designs to their traditional counterparts to verify the accuracy
and realism of our haptic feedback. Finally, we describe a survey
with professional artists.

8.1 Study 1: Acquiring Vocabulary
The goal of the first experiment is to make sure all subjects are
sufficiently familiar with traditional drawing tools, can describe
differences between the tools, and that they are comfortable with
our experimental setup. This experiment serves as a base of all our
studies which are performed under the same conditions.

8B Penci

Task and Stimuli. The participants were sat in
front of a cloth, which eliminates visual cues and
asked to wear noise-canceling headphones to elim-
inate auditory cues. To eliminate the tool-shape bias
we place each drawing tool in a unified holder based
on Copicmarkers. At each trial, the participants were
given one drawing tool (material and a surface) and asked to draw
with it using a simple back and forth motion resembling shape filling
(inset Figure) with the task of describing the perceived haptic feed-
back verbally. After drawing with each tool, they were presented
with pairs of tools and asked to describe perceived differences. The

study was concluded when the participants felt confident in describ-
ing both the feedback and the differences. For this experiment, we
selected three tools providing substantially different haptic feed-
back: ballpoint pen on rough paper, 8B pencil on stone paper, and
charcoal on rough paper. To not bias the participants, we referred to
the tools as letters A, B, and C. During the preliminary experiment,
we realized that without visual and auditory cues, people often use
an unusual amount of force. Therefore, the task was first performed
on a scale, and the participants were informed in case the force they
used was outside the range of commonly used pressure values for
drawing [Piovarči et al. 2018].

Participants. A total of 22 participants (15 male and 7 female)
aged between 22-33 participated in the experiment.

Observations. The limited sensory conditions initially affected the
pressure applied by the participants. After a couple of trials, they all
got accustomed to the task and naturally maintained pressure used
for drawing. Most participants used common descriptive terms, such
as vibration, drag, friction, smoothness. The tools also were often
compared to known drawing instruments. The ability to describe
the tools was facilitated by the comparison task when users were
able to contrast the feedback of different drawing tools.

8.2 Study 2: Distinguishing Drawing Tools
In the second experiment, we verify whether participants can distin-
guish between the three drawing instruments from Study 1. Addi-
tionally, we introduce our replicas to test whether the participants
can associate them with the correct traditional counterparts.

Task and Stimuli. In each trial, the participants were presented
with one tool (A, B, or C) at random and asked to identify it. After
three trials with each traditional tool, we introduced our reproduc-
tions and performed two repetitions with each 3D printed tool and
one repetition with each traditional tool again. The order of trials
was randomized. We assume the study to be successfully completed
if a participant correctly identified the type of all traditional tools
with an 80% success rate.

Participants. All participants of Study 1.

Results. All but one participant completed the experiment suc-
cessfully. Having completed successfully was a prerequisite to par-
ticipate in further studies. In the vast majority of incorrect answers,
participants confused the pencil with the charcoal. This can be ex-
plained by the orientation-dependent haptic feedback produced by
the charcoal. Using the tool with a short edge canmomentarily lower
the drag making it similar to the pencil. In 98% percent of cases,
our tools were associated with correct traditional counterparts. In-
terestingly, there was less confusion between our replicas of the
pencil and the charcoal than between the original tools. We attribute
the increase to more consistent feedback provided by our tools, i.e.,
absence of wear. Chi-square goodness of fit revealed that there is a
significant effect (p-value < 0.001) of the type of the presented tool
on the associated traditional counterpart. In a post hoc analysis, a
pairwise comparison using binomial tests with Holm-Bonferroni
correction revealed that the preference of assigning our replicas to
their corresponding drawing tool is statistically significant (p-values
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< 0.001 for all drawing tools). The above results demonstrate that
not only can the participants correctly identify traditional draw-
ing tools using only the haptic feedback, but also, our replicas are
most of the time (98% cases) associated with the correct traditional
counterparts.

8.3 Study 3: Comparison with State of the Art
Our third study builds upon Study 2 and compares our replicas with
industrial and state-of-the-art approaches in academia to verify
whether users show a stronger preference towards our solution.

Task and Stimuli. In each trial, participants were presented with
a triplet of drawing instruments, i.e., reference and two tests. The
reference tool was always taken from the following set of traditional
drawing tools: 8B pencil on stone paper, ballpoint pen on rough
paper, and charcoal on rough paper. One of the tests was our replica
of the reference tool, while the second test was an alternative repro-
duction. The alternative solutions consisted of (a) the reproduction
produced by [Piovarči et al. 2018] for a glass substrate of a standard
tablet, (b) surface geometry reproduction using a 3D printer with
ballpoint pen which measured closest to the real counterpart (Sec-
tion 7.1), and (c) a range of commercial styli with drawing surfaces:
Apple pencil, Wacom tablet with different drawing nibs, Paperlike
surface. The task in each trial was to identify one of the test tools
whose haptic feedback is most similar to the reference.

Participants. A total of 11 participants (8 male and 3 female) aged
between 21-33 participated in the experiment.

Results. The results of the experiment (Figure 18) demonstrate
that our reproduction provides a better match of haptic reproduction
when compared to any other drawing tools considered in the exper-
iment. Our tools were chosen in 98% of cases. The remaining 2% are
the replicas produced using the recent work of Piovarči et al. [2018].
An analysis of pairwise differences using binomial tests with Holm-
Bonferroni correction revealed that the preference of our tools in
each trial is significant (p-values of < 0.006).
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Fig. 18. Bar-plot showing the similarity of our tools when compared to other
digital styli. For each reference, indicated on the top, and an alternative
solution, indicated below the bars, the plot shows the percentage of partici-
pants finding our replica more similar than the alternative commercial or
research solution.

8.4 Study 4: Realism of Reproductions
In the last experiment, we want to assess how close our optimized
replicas are to their traditional counterparts. Since showing that
two tools are indistinguishable is difficult from the statistic point
of view, we instead analyze the perceived distances between our
replicas and the original tools.

Task and Stimuli. Similarly to the previous experiment, in each
trial, participants were presented with one reference and two test
sets of drawing instruments. The reference tool was one from the
following set: 2H pencil on stone paper, 8B pencil on stone paper,
ballpoint pen on rough paper, and charcoal on rough paper. One of
the tests was our replica of the reference tool. The second test was
a traditional drawing tool with a paper substrate. The task was to
identify which of the two test tools were closer to the reference. The
task was performed 6 times for each reference tool in progressively
harder trials. We first compared our replica with the two other tools
from the convex hull of haptic feedback. Next, we compared our
replica to a novel sensation produced by either varying the drawing
paper or the drawing tool. Finally, we compare our replicas with
the original tools they were meant to reproduce. All of the trials
were randomized to avoid ordering effects.

Participants. A total of 10 participants (4 females and 6 males)
aged between 22-28 participated in the experiment.

Results. The raw data from the experiment (Figure 19) demon-
strates that even though not in all cases our replicas are often con-
fused or preferred over traditional drawing tools. We argue that this
is already a good result since it is often reported that commercial
solutions feel nothing like traditional tools. Additionally, our repli-
cas of the ballpoint pen, 8B pencil, and even 2H pencil, were often
confused with their traditional counterparts. To further analyze the
results, we apply the algorithm of Piovarči et al. [2018], to recover
a small two-dimensional perceptual space for the set of the tools
considered in this experiment (Figure 20). We can observe that our
reproductions are close to the target tools and do not form a sep-
arate cluster. This suggests that our stylus-surface combinations
produce realistic haptic feedback similar to traditional drawing in-
struments. The biggest discrepancy is between the reproduction of
the 2H pencil on stone paper. This can be likely explained by the
wear of the hard pencil and its reliance on orientation to produce a
consistent haptic response. Nevertheless, even in such a challenging
scenario, our reproduction is closer than alternatives. It is inter-
esting to note that the recovered perceptual space approximates
the original space of Piovarči et al. [2018], which suggests that our
studies are consistent with the previous work.

8.5 Summary
The experiments above allow us to draw two main conclusions.
First, the replicas of the traditional tools provided by our technique
outperform all the investigated research and commercial solutions.
Second, our replicas provide haptic feedback that is close to the one
generated by their traditional counterparts. While the reproduction
of the feedback is not exact, it is essential to note that digital draw-
ing tools should not replicate all phenomena governing the haptic
feedback of the traditional tools. For example, the wear of the tool
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Fig. 19. Bar-plot showing the similarity of our tools when compared to
traditional drawing tools. For each reference, indicated on the top, and
an alternative traditional tool, indicated below the bars, the plot shows
the percentage of participants finding our replica more similar than the
alternative tool.
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Fig. 20. Two-dimensional perceptual space computed for tools in our exper-
iments. The Euclidean distance between the samples can be interpreted as
a perceived distance between different drawing tools combinations.

changes how the tool feels over time, but it is not desired for the
digital tools to replicate the effect.

9 SURVEY WITH PROFESSIONAL ARTISTS
One of the main goals of reproducing haptic feedback on digital
tablets is to improve the drawing experience of professionals as
well as boost their productivity and creativity. We invited several
professional artists to draw with our 3D printed stylus-surface com-
binations and asked them how they compare to traditional drawing
tools and commercial alternatives.

Questions and Stimuli. The survey started with a short interview
to acquire information about the background and skill set of each
artist. We then followed with questions about traditional tools and
their strengths/weaknesses when compared to digital styli. After-
ward, we presented them with a selection of traditional drawing
tools. They were able to compare them to commercial tablets from
Wacom, Apple, as well as our 3D printed replicas. To eliminate the
visual bias we use a passive setup with no stroke rendering for the
digital styli. The artists were motivated with questions regarding
the advantages and disadvantages of our tools. Finally, we asked
them if they would use the proposed designs in their daily work.

Participants. 5 professional artists (3 female, 2 male) aged 21-35
were invited to participate in the study.

Results. Most artists reported that missing haptic feedback is an
issue that affects the concentration and ability to swap between
traditional and digital tools quickly. However, one can get used to it
when drawing on a daily basis. When comparing with traditional
tools, the currently available digital tools lack the feeling of surface
texture. Paperlike was closest to the feeling of a soft pencil on paper,
but the structure was still weaker.
Our ballpoint pen reproduction was received very well, and it

was reported as feeling very close to the real pen, with the main
difference being the lack of the feel of the rolling ball. Our charcoal
reproduction was also received well and reported to be very similar
to the real charcoal. The main difference was the wear that our
tool does not reproduce. One participant noticed the stickiness
of our materials and claimed it to be unpleasant. The 2H pencil
reproduction was also considered close to the real pencil. The main
disadvantage was the wrong auditory feedback. Nevertheless, the
tool felt real as it reproduced the feel of the paper texture realistically.
Our reproduction of 8B pencil was ranked as the best replica with
multiple participants rating it to be the same as the reference.
All of the participants expressed interest in trying to use our

tools for a more extended time. They also expressed their interest in
testing whether the enhanced haptic feedback leads to strokes more
similar to traditional tools. The survey demonstrates that our digital
tools were well-received, and the professional artists appreciated the
haptic feedback. Despite some limitations, the feedback provided by
our tools makes them an exciting alternative for currently available
digital tools. For a detailed transcript of the study, please refer to
the supplementary materials.

10 LIMITATIONS AND FUTURE WORK
Our results are limited by the available materials and resolution
of fabrication devices. To reproduce materials with a large friction
coefficient, we are limited to use rubbery resins, which have an
unintentional side effect of adding stickiness to our tools. Unfor-
tunately, this is not captured by the perceptual space we use, and
while most artists did not report the problem, stickiness should be
minimized at least through material selection. An additional fabri-
cation constraint lies in the simplicity of our designs. Our styli are
composed of a rigid holder and a swappable cone-shaped nib. This
design limitation is most notable for the ballpoint pen, which was
reportedly close to the target but perceived by some participants
as a hard pencil, which indeed is very close in the perceptual space
to the pen. The reported difference was the perceivable lack of a
rolling ball in our design. In future work, it would be interesting to
see whether addressing the limitations in hardware, design space,
and perceptual modeling can make the replicas of the tools feel even
more similar to the traditional tools. Our fabrication-in-the-loop
optimization procedure is a natural approach to try incorporating
such extensions.
Besides manufacturing constraints, there are two modalities of

drawing tools that we did not consider during optimization: sound
and wear. Even though the sound of our tools is already similar
to the one produced by real tools, the overall drawing experience
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would likely improve with accurately synthesized audio. The wear
also does not match that of traditional instruments. This is mostly
noticeable on tools such as charcoal, which behave differently based
on wear. However, not mimicking the wear of traditional tools is
a practical consideration since introducing significant wear would
significantly lower the lifespan of our tools and add unacceptable
debris in electronics.
During formative experiments, we attempted to manually opti-

mize for a surface that obtains similar haptic feedback to a ballpoint
pen. After printing more than 60 designs, we were unable to achieve
a satisfactory solution. This initial experiment motivated us to de-
sign an automatic method that provides significant time savings.
In the future, it would be interesting to conduct detailed studies
with expert designers to compare quantitative speed-up and im-
provement provided by methods like ours to direct and manual
human-driven search.
Exciting avenues for future work also include improvements to

our fabrication-in-the-loop methodology. Currently, our algorithm
explores new designs via greedy sampling based on expected im-
provement for which we provide an efficient, closed-form solution.
Alternatively, one can exploit the capabilities of 3D printers to pro-
duce multiple designs in parallel. Such an approach requires finding
a set of best candidates from a continuous domain. Unfortunately,
we are not aware of an analytical solution to this problem; therefore,
the key here lies in formulating an efficient numerical algorithm. Our
surrogate model can be potentially enhanced by reusing previously
printed designs to performmore measurements in combination with
newly printed ones. However, since not all combinations provide the
same information gain, focusing on efficient ways of selecting the
combinations that maximize the improvement given a time budget
for measurements is a promising extension.
Further improvements and future work were also suggested in

our survey by artists. Some of them reported that our tools have
the quick-and-dirty feeling of traditional instruments, which is as-
sociated with the stochastic nature of the drawn strokes. It would
be interesting to consider a co-optimization of the drawing tools
and the synthesized stroke to match not only the haptic but also
the visual feedback. Another direction of future work includes the
optimization of a limited set of distinct and representative drawing
tools to provide a user with a small set of tools fulfilling their needs.

11 CONCLUSION
Despite the success of digital drawing tools, fabricating tools which
can closely replicate the haptic feedback of the traditional draw-
ing tools is a challenging problem. The problem requires a joint
optimization of the drawing surface and a stylus, which accounts
for limitations of fabrication techniques. Unfortunately, due to the
complexity of the phenomena which govern the feel of the tools
and the scale at which they occur, standard optimization techniques
that rely on numerical simulation or direct reproduction of material
properties and geometry do not lead to successful solutions. In this
work, we demonstrate that for the class of problems, where simu-
lating physical phenomena is more expensive than fabricating and

measuring exemplar solutions, it becomes beneficial to replace sim-
ulation with fabrication. Consequently, we propose a fabrication-in-
the-loop optimization procedure for replicating traditional drawing
tools. A key ingredient for making such a procedure successful is
an efficient sampling of the design parameter space, which, in our
case, is realized using Gaussian Processes. Such an approach not
only enables efficient sampling of the design space but also allows
for performing the optimization directly in the perceptual space of
drawing tools, which focuses the search on perceptually-relevant
features. We applied our technique to fabricate a wide range of tools
using several fabrication techniques. The user experiments with
casual users, as well as a survey with professional artists, confirmed
that our optimization strategy produces tools with realistic haptic
feedback, which closely resembles the behavior of the traditional
tools. When compared to existing solutions, our tools are preferred
over all investigated alternatives.
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