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A foveated image can be entirely reconstructed from a sparse set of samples distributed according to the retinal sensitivity of
the human visual system, which rapidly decreases with increasing eccentricity. The use of Generative Adversarial Networks
has recently been shown to be a promising solution for such a task, as they can successfully hallucinate missing image
information. As in the case of other supervised learning approaches, the definition of the loss function and the training
strategy heavily influence the quality of the output. In this work,we consider the problem of efficiently guiding the training of
foveated reconstruction techniques such that they are more aware of the capabilities and limitations of the human visual
system, and thus can reconstruct visually important image features. Our primary goal is to make the training procedure less
sensitive to distortions that humans cannot detect and focus on penalizing perceptually important artifacts. Given the nature
of GAN-based solutions, we focus on the sensitivity of human vision to hallucination in case of input samples with different
densities. We propose psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The
proposed strategy renders the generator network flexible by penalizing only perceptually important deviations in the output.
As a result, the method emphasized the recovery of perceptually important image features. We evaluated our strategy and
compared it with alternative solutions by using a newly trained objective metric, a recent foveated video quality metric, and
user experiments. Our evaluations revealed significant improvements in the perceived image reconstruction quality compared
with the standard GAN-based training approach.

1 INTRODUCTION
Wide-field-of-view displays, such as virtual and augmented reality headsets, require efficient methods to generate
and transmit high-resolution images. Techniques for reconstructing foveated images seek to solve the problem
by leveraging the non-uniform sensitivity of human vision to spatial distortions across a wide field of view and
generate high-quality images around only the location of the gaze as indicated by an eye-tracking device. Such
foveated systems usually consist of two main steps [24, 50, 58]. First, an image is generated or transmitted in the
form of a sparse set of samples that are generated according to the location of the gaze. Second, the image is
reconstructed from the sparse information before being shown to the observer. An example of such a technique
is foveated rendering [15] where fewer image samples are computed for peripheral vision to save computation
during rendering (Figure 1).

We focus on the second step above, i.e., reconstructing an image from sparse samples. While simple techniques,
such as interpolation [50] can be used to this end, it has been demonstrated that machine-learning techniques,
more precisely, generative adversarial networks (GANs), can provide superior results [24] due to their ability
to hallucinate missing content based on the learned statistics of the given image or video. Although such
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reconstruction requires additional computation, it can provide results of a similar quality as those obtained by
simpler techniques while using fewer input samples. However, several challenges persist in design and training
in this regard. Every GAN architecture is composed of two neural networks trained simultaneously [14, 24]. In
the task of foveated image reconstruction, one of them, called the generator, is responsible for reconstructing the
image from a sparse set of samples, while the second one, called the discriminator, is responsible for discriminating
between real and reconstructed images. The training iterations of both networks are interleaved such that an
improvement in one of them triggers an improvement in the other. Ultimately, training in this manner can be
viewed as a game between the generator and the discriminator networks, where the generator tries to reconstruct
perfect images from a limited number of samples to try to fool the constantly improving discriminator. Therefore,
to successfully train a GAN architecture, maintaining a balance between the training of the generator and the
discriminator is highly important. Another challenge, which is the main focus of this paper, involves the choice
of training loss and procedure. As in other supervised learning solutions, they have a significant influence on the
final performance of GAN-based reconstruction.
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Fig. 1. The input to the foveated image reconstruction are
sparse samples (magnify the top-left part of the image or see
the insets), based on which the technique reconstructs the
images (bottom-right part of the image). The image in this
example consists of three regions: fovea (100% samples), near
periphery (12% samples), and far periphery (0.7% samples). The
white cross in the center indicates the position of the gaze. The
reconstructed regions are combined by using linear blending
to create a smooth transition between them.

The recent literature has acknowledged that for any
task where the perceived quality is critical, the loss
function must capitalize on visually important image
features. A well-known strategy to incorporate such
perceptual findings in neural network training is to
use a perceptual loss function (e.g., LPIPS [70]). While
training a GAN, it is possible to use such a function as
the loss for training the generator [24]. However, our
main hypothesis is that this is insufficient because the
training of the discriminator should alsotake into ac-
count the properties of human visual perception. To ad-
dress this problem, we propose a new training scheme
for the discriminator. Instead of training the discrim-
inator to distinguish reconstructed images from real
images, our technique trains it to distinguish the re-
constructed images from real images that contain im-
perceptible distortions.
In this way, the discriminator network can inherit

the limitations of the HVS (Human Visual System) rep-
resented in the data, and stops penalizing the generator
network for reconstructing imperfect images within perceptual limits.

Consequently, in this work, we aim to improve GAN-based machine-learning approaches for foveated recon-
struction by introducing a new training scheme based on perceived quality degradation. We first design and
conduct psychophysical experiments to study the sensitivity of human visual system to content-based hallucina-
tions across a wide visual field. Our choice of stimuli is inspired by several findings on the degradation of the
sensitivity of human vision along the periphery. Although many foveated systems have previously exploited the
loss of visual sensitivity to high-frequency information [15, 58], the effect does not fully explain the visibility of
missing information in peripheral vision. For example, past psychophysical experiments suggest that even though
a perfect reconstruction of fine details of the image in the periphery is not critical, a complete lack of high spatial
frequencies is detectable [55]. Another effect that is not fully explained by the reduced visual sensitivity to higher
spatial frequencies in the periphery is the increased positional uncertainty [20, 31]. To reflect these findings, we
employ a technique of texture synthesis guided by the statistics of the original images to generate stimuli with
varying amounts of hallucinated content. We argue that this type of distortion resembles the content synthesized
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by using GAN-based image reconstruction, and our experiments quantify their visibility. We then demonstrate
how to incorporate the experimental results into training. Finally, we show how our strategy of focusing on
perceptually important image features during training can lead to a GAN-based foveated reconstruction method
that provides higher reconstruction quality with the same number of input samples or, conversely, the same
perceived quality using fewer samples, leading to savings in bandwidth or rendering time. We argue that this is
possible because our foveated reconstruction method aims to recover perceptually important image features that
would be otherwise lost due to sub-sampling. The new dataset also allows us to calibrate application-specific
objective metrics that predict image quality. We use the new metric and the perceptual experiments to evaluate
our new training strategy and compare it with alternative solutions.

2 RELATED WORK
Our work takes inspiration from and bridges the expertise in visual perception, computer graphics, and machine
learning. Here, we provide an overview of the relevant works from these fields.

2.1 Foveal vs. peripheral vision
Retina. The perceptual capabilities of the HVS have been extensively studied under different positions of visual

stimuli in the visual field. Perception is not uniform across the visual field owing to optical and physiological
limitations. Studies on the retina revealed that the density of photoreceptors in the retina is highly heterogeneous
[7, 67]. The central region of the retina, called the fovea centralis (or fovea), is characterized by a relatively high
density of cone photoreceptors and retinal ganglion cells (RGCs). This provides foveal vision with a superior
perceptual capability compared with non-foveal (or peripheral) vision. Although the fovea provides a sharp
central vision, it is relatively small and corresponds to approximately 2° of the visual field, which spans up to
160-170° [28]. On the contrary, peripheral vision corresponds to more than 99 % of our visual field.

Peripheral contrast sensitivity. To study the differences between foveal and peripheral vision, previous psy-
chophysical studies have focused on measurements of the contrast sensitivity function (CSF), which represents
the sensitivity to changes in contrast at different spatial frequencies [3, 26, 32]. Research on the fovea has shown
that the human CSF curve has a peak around 4-8 cycles per degree (cpd), with its tail reaching up to 50-60 cpd.
Later, Peli et al. [38] and, more recently, Chwesiuk et al. [6] extended these measurements to peripheral vision, and
observed that the decline in contrast sensitivity is characterized by a smaller peak that shifts toward lower spatial
frequencies as eccentricity increases. This implies a loss of sensitivity to content with high spatial frequency
content in peripheral vision.

Foveated rendering. The differences between foveal and peripheral vision mentioned above have led to gaze-
contingent techniques that process and display images depending on the position of the gaze of the observer.
Foveated rendering is an actively studied gaze-contingent technique in this domain. It uses the position of the
gaze from an eye tracker for a low-resolution image reconstruction in the periphery [5, 15, 25, 34, 37, 50]. These
studies have significantly reduced the computational cost of rendering because they reduce the number of pixels
to be rendered [68]. However, their reconstruction methods are mostly based on the simple interpolation of a
sub-sampled image and such post-processing steps as temporal antialiasing and contrast enhancement. However,
such a simple reconstruction approach does not aim to replace the high-frequency spatial details lost as a result
of the undersampling of the underlying content, leading to noticeable degradation in quality.

Hallucinating image details. Psychophysical measurements show that peripheral vision requires a more so-
phisticated model than a simple boundary between perceptible and imperceptible regions of contrast guided by
the shape of the CSF [45, 47]. Thibos et al. [55] revealed that the threshold of resolution declines from 14 cpd to
2.6 cpd in the range of eccentricity of 5° to 35°, whereas the threshold of detection drops from 46 cpd to 28 cpd in
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the same range of eccentricity. As a result of the faster drop-off in the threshold of resolution, there exists a band
of spatial frequencies that can be detected but not accurately resolved for each value of eccentricity. Additional
studies have shown that performance in terms of discriminating the spatial phase also degrades with increasing
eccentricity and leads to greater positional uncertainty in visual perception [31, 35, 40]. Rosenholtz [44] claimed
that the HVS encodes image statistics rather than precise location information in peripheral vision, leading to a
performance decline in resolving the stimulus position. These studies have important implications for the design
of foveated image reconstruction methods because they clearly show that HVS models driving the reconstruction
must be comprehensive enough to consider multiple aspects of visual perception. In contrast to the standard
reconstruction techniques mentioned above, we address this missing piece in the foveated image reconstruction
pipeline.

2.2 Metamers
The goal of foveated rendering can be viewed as the low-cost production of images that are metameric to the
full-quality rendering. Metamer here refers to images that are structurally different but appear the same to the
human observer. Moreover, foveated rendering assumes knowledge about gaze position; therefore, images are
metameric usually only for a given gaze location at which most of their content is observed by peripheral vision.
The limitations of the HVS perception have inspired several important studies on metamerism. Initial work

aimed to synthesize textural metamers, i.e., different images representing the same type of texture. To this end,
Portilla and Simoncelli [39] used an iterative optimization that is run until a randomly initialized image patch
converges to the same summary statistics as the target texture. Their observations led to further studies on
crowding effects, and Balas et al. [2] revealed that the representation of summary statistics can explain the
crowding effects observed in the periphery. Rosenholtz et al. [46, 47] introduced the texture tiling model (TTM),
which models the performance of visual search in the periphery. Based on the ideas on summary statistics,
Fridman et al. [12] proposed a convolutional network to reproduce the outputs of the TTM, and Deza et al. [9]
introduced a generative adversarial network model for creating metamers of peripherally viewed natural images.
Instead of using hand-crafted summary statistics, as previously introduced by Portilla and Simoncelli [39], they
used channel autocorrelation statistics computed from the pre-trained VGG network features [48]. Although
these studies have delivered promising results, their main goal is to study foveal texture perception or provide a
reference model for studying the properties of peripheral vision (e.g., for visual crowding). More recently, Walton
et al. [61] proposed a real-time method for producing metameric images to peripherally viewed input images
with the main application of image and video compression.

While all the above-mentioned studies have focused on producing a metamer of an input image, this approach
is not directly applicable to foveated rendering, the goal of which is to avoid rendering the original, full-quality
image in the first place. Therefore, it is interesting to consider the problem of computing images that are metameric
to full-quality rendering but are derived based on partial information from the rendering system. Examples of
such techniques include standard foveated rendering, where the shading rate is reduced toward the periphery
[15], as well as more recent techniques, where contrast enhancement [37] or noise synthesis [53] are applied to
further reduce the amount of information needed for reconstructing peripherally viewed metamers of full-quality
images. Kaplanyan et al. [24] recently introduced a powerful method to this end. They proposed a foveated image
compression solution by using a GANmodel that reconstructs perceptually plausible image sequences from a very
sparse set of samples while maintaining temporal coherence. Our work takes inspiration from this solution and
aims to minimize the required number of samples from the underlying content while achieving the best-perceived
quality. To this end, similar to past work, we focus on reconstructing by hallucination but capitalize on positional
uncertainty, and distortions [55] by modifying the training scheme. More precisely, in contrast to the scheme
presented by Kaplanyan et al. [24], where the discriminator network is trained on ground-truth images, we train
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it on data derived from a series of systematic experiments that analyze the sensitivity of the HVS to distortions
in the periphery.

2.3 Image metrics and perceptual loss
One way of guiding image reconstruction is to use image metrics. Current foveal quality metrics use the
properties of central vision and provide inaccurate predictions for the periphery. The growing research on
peripheral vision and its applications to foveated image reconstruction suggests the need for new foveated
metrics [17, 21, 29, 42, 52, 56, 57, 60, 64]. These metrics are promising candidates to guide the loss function
in learning-based approaches. However, their complex implementations, costly computations, and, in some
cases, non-differentiable operations pose challenges for training models of image reconstruction by using them.
An alternative to this is to use a training loss defined on the feature maps from a pre-trained deep network.
This has become one of the most common approaches to learning-based image reconstruction, especially for
super-resolution-based techniques [10, 23, 70]. Compared with a simpler loss function, such as the mean squared
error (MSE), the loss functions defined on the hierarchical features of deep networks more closely resemble how
the HVS processes visual information. However, there may still be significant differences between deep network
representation and human visual perception [11]. In addition, some of the most commonly used pre-trained
networks have been shown to have redundancy in their feature representations when reconstructing for the
best-perceived quality [54]. The losses defined on those feature representations improve the perceived quality in
the fovea but are not specifically optimized for peripheral vision. In this work, we take an orthogonal approach
in the context of GAN training. Apart from using a perceptual loss to train a generator, our main contribution
is a modification to the training of the discriminator such that it better reflects the discriminative power of a
human observer.

3 PERCEPTUAL EXPERIMENTS
There is an important connection between studies on metamers and those on foveated image reconstructions
using GANs discussed above. While the former postulate the importance of preserving image statistics for
peripheral vision, the latter reconstruct the content according to the discriminator trained on natural images
and videos. However, we argue that training the discriminator using natural images does not adequately reflect
the lack of sensitivity of the HVS to spatial distortions, and excessively constrain the generator in hallucinating
content. Therefore, we propose to train the discriminator on a dataset composed of images that contain distortions
that are unobjectionable to the observers.

It is important to note that the primary goal of this procedure is not to cause the GAN to produce distortions,
but rather to make it insensitive to the distortions that humans cannot detect and focus on penalizing perceptually
important artifacts. By doing this, we want the discriminator to share limitations similar to those of the HVS.
Training GANs on an extensive dataset of images containing distortions with a near-visibility-threshold

requires the responses of human observers in a subjective experiment, in which the participants are asked
to adjust the level of distortion in peripherally viewed stimuli. However, owing to the sheer amount of data
typically required for training the GAN, it is unfeasible to generate such a dataset by relying solely on perceptual
experiments in a controlled lab environment with a reasonable number of participants. Therefore, we rely on
method of texture synthesis that takes advantage of the correlation between image features to preserve the
statistical properties of an input image. By imposing pixel-level constraints, we can control how faithful the
reconstruction is to the structure of an exemplar. The number of pixel-level constraints acts as a parameter
that controls the freedom to change the structure of the synthesized image with respect to the input, thereby
introducing a way to control the strength of visual distortions that can be permitted in the reconstruction. We aim
to use subjective experiments to measure the strength of distortions, which makes the reconstruction metameric
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with respect to the peripherally viewed ground-truth stimulus. Once the optimal parameters have been estimated
for a smaller set of images in the perceptual experiment, we generate a dataset large enough for training the
GAN by using the method of texture synthesis, thus eliminating the need to conduct subjective experiments with
an unreasonably large number of participants.

3.1 Stimuli generation
Our stimuli generation model is based on the texture synthesis method proposed by Gatys et al. [13]. We
customized their method by partially constraining the synthesis to control the level of visual distortion in a
convenient way. We exploited this capability to create metamers of the input image given the specific viewing
conditions. Their method was formulated as an optimization procedure on feature maps of the pre-trained
VGG-19 [48] network that optimizes ®̂𝑥 for an input exemplar ®𝑥 by minimizing the loss function:

ℒ( ®𝑥, ®̂𝑥) =
𝐿∑
𝑙=0

𝑤𝑙

∑
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where 𝐺𝑙
𝑖 𝑗 and 𝐺𝑙

𝑖 𝑗 are Gram matrices for feature maps 𝑖 and 𝑗 in layer 𝑙 , 𝑁𝑙 is the number of feature maps,𝑀𝑙

is the total number of neurons in a layer, and𝑤𝑙 is an additional weight associated with layer 𝑙 . To synthesize
images for our experiment, we use the same procedure but also constrain a portion of randomly chosen pixel
values in ®̂𝑥 such that they are identical to the corresponding pixels in ®𝑥 . We refer to these pixels as guiding
samples. We enforce the quality constraint by projecting the solution to the feasible space in each iteration of a
gradient descent optimization.

We observed that solving the constrained optimization leads to subtle image artifacts that resemble checkerboard
patterns (Figure 2, first row – middle). The problem is related to the well-known issue of checkerboard artifacts
created by backpropagation [36]. We identified two solutions to address this issue. The first consists of running
the constrained optimization until convergence, removing the checkerboard artifacts characterized by a high
spatial frequency by applying a low-pass Gaussian filter (𝜎 = 1), and running a second round of optimization
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Fig. 3. Results of stimulus generation for different numbers of guiding samples (left) and values of 𝜎 (right) of the Gaussian
filter. Note the increased distortions relative to the exemplar when the number of guiding samples decreases (left) and when
𝜎 increases (right).
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without the constraint. We also perceptually verified that similar results may be achieved when constrained
optimization is initialized with the guiding samples filtered by a Gaussian filter (Figure 2, second row).

initialization
2nd opt.1st opt.

1st opt.

�nal patch

initialization �nal patch

Fig. 2. The figure presents two strategies for synthesizing stim-
uli by using the guiding samples. Top: a two-step procedure
where a second unconstrained optimization is performed to
remove subtle checkerboard artifacts after applying a Gaussian
filter with 𝜎 = 1. Bottom: constrained optimization initialized
with a blurred version of the guiding samples.

Using the above procedure, we computed the im-
ages ®̂𝑥𝑝 , where 𝑝% is the percentage of the guiding
samples (see Figure 3, left). For 𝑝 = 0, our synthesis
is equivalent to the original technique presented by
Gatys et al.
The loss of high spatial frequencies (as commonly

observed when reducing the input resolution) is an
important factor influencing the perceived quality. To
improve the sensitivity of the trained metrics to a vis-
ible decline in resolution, we also created a separate
dataset of images with different degrees of Gaussian
blur, i.e., different values of 𝜎 of the Gaussian kernel
(see Figure 3, right). The results of the perceptual ex-
periment obtained with these stimuli were used to
expand the dataset of images to train the image met-
rics in Section 5.2.

3.2 Experimental protocol
The number of the guiding samples 𝑝 and the value
of 𝜎 of the Gaussian kernel provide a parametrization for our investigation of the sensitivity of the HVS to
deviations relative to the original images. More precisely, with the generation of stimuli using texture synthesis in
our main experiment, we sought a direct relationship between the number of guiding samples and the probability
of detection of the distortions by a human observer at a particular eccentricity. We later used this relation to
generate a much larger dataset of images with imperceptible distortions that is required for training GAN-based
foveated reconstruction. By contrast, the additional experiment with Gaussian blur only sought pairs of images
and the corresponding probability of blur detection, as a smaller dataset was sufficient for training our image
metrics.

Stimuli. We prepared 24 image patches of size 256 × 256 each from a different 4K image. The images are
grouped into two main categories: nature and architecture. Nature images typically do not contain as much
structure as the architecture images of human-made objects. The features present in the nature images have a
larger variance in their texture, both in terms of colors and frequency-related content. Natural objects have a
large variety of shapes without any strict pattern. On the contrary, architecture scenes usually contain larger
uniform areas with clear separation between different parts. We expected that reconstructing images with a
clear structure may be more challenging. For each patch, we generated a corresponding set of distorted patches
for 𝑝 ∈ {0, 3, 5, 7.5, 10}. The set of values of 𝑝 was determined in a preliminary experiment, in which we found
that 𝑝 > 10% yields to images that are almost always perceptually indistinguishable from the originals. A set of
ground-truth patches was used to generate a set of blurred patches for 𝜎 ∈ {0.25, 1.25, 2.25, 3.25, 4.25}. The range
was chosen to uniformly span the range of visible blur across the considered field of view [58]. The sample of our
stimuli is presented in Figure 3.

Task. The experiment started with a short initial warm-up phase, in which the participants received instructions
about the task. Subsequently, in each trial, three patches were presented to them on the screen: (1) the original
patch at the fixation point, (2) a synthesized stimulus on either the right or the left side at a given eccentricity,
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and (3) the original patch on the opposite side at the same eccentricity. The stimuli were visible to both eyes, and
the participants were asked to select the patch that was more similar to the reference by pressing left or right
arrow keys of the keyboard.
Although we asked the participants to maintain their gaze at the center of the screen during the experiment,

involuntary changes in the position of the gaze might have occurred from time to time. To preserve the retinal
position of the stimuli against involuntary movements of the eyes of the participants, the stimuli followed the
eye movements (see Figure 11). For this purpose, the gaze position is continuously monitored by using an eye
tracker. The participants were not required to always focus on one point because the stimuli always followed
the gaze point. The participants did not receive feedback on the correctness of their responses. We tested the
visibility of distortions at 8° (the end of the parafovea [62]), 14° (the center of the perifovea [51, 62]), and 20°,
for which the stimuli spanned 3.21°, 3.08°, and 2.89°, respectively. The distance between the participant and the
display was set to 70 cm during the experiment. At this viewing distance, each pixel spanned approximately
0.012 visual degrees. We did not impose a limit on the viewing time, and the average duration of each trial was 2
seconds. In total, each participant performed 1800 trials, leading to a total duration of almost 1 hour. The order
of the images, eccentricities, and sides on which the test stimuli were shown were randomized. We used these
experimental settings with both types of stimuli (created using texture synthesis and Gaussian blur).

Hardware. We used a setup consisting of a 27” Acer Predator display operating at a resolution of 3840×2160 px
at 120Hz and a peak luminance of 170 cd/m2. We used a Tobii Pro Spectrum eye tracker at a sampling rate of
600Hz to track the position of the gaze.

Participants. In order to investigate the potential effects of the participants’ background and knowledge of the
field, we conducted this experiment1 with two groups of participants. The first group consisted of five participants
(four of them were the authors) who had extensive experience in computer graphics and full knowledge of the
task. The second group consisted of 10 naive participants who had no experience in computer graphics or related
fields. To improve the diversity of the stimuli, the naive participants performed the experiments with an extended
dataset that contained four additional images. All participants were between 25 and 36 years of age and had a
normal or corrected-to-normal vision.

3.3 Data analysis
The results of Gaussian blur were used directly to train the image metrics (Section 5.2). The rest of the data, i.e.,
for texture synthesis-based stimuli, were processed separately for the expert and naive participants, and then
compared. For each eccentricity and number of guiding samples tested, we first aggregated the participants’
answers across all images and then computed the probability of their detection of distortions in the patches. We
then expressed the relationship between the number of guiding samples and the probability of detection for each
eccentricity by using a cubic polynomial fit. The results are shown in Figure 4 for both the expert and naive
groups.
To construct a set of image patches to train a discriminator in a GAN architecture, we sought a relation

between eccentricity and the number of guide samples, to produce patches that did not contain objectionable
artifacts when used with texture synthesis. We used the probabilities obtained from the experiments for guidance.
More precisely, we used the number of the guiding samples corresponding to a 75% probability. Our choice was
motivated by the commonly used definition of one just-noticeable-difference (JND) being a transition between
visible and invisible distortions [33]. In practice, this is the midpoint between distortions that are always visible
and those that are invisible. Although lower probabilities, such as 50%, can be considered, we argue that 75%
provides a good trade-off for two reasons. First, the probabilities estimated from psychological experiments can

1approved by Ethical Committee of Università della Svizzera italiana, decision CE.2020.3.
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asymptotically converge to only 50%, posing challenges when seeking the exact 50% point. The estimation of the
threshold becomes ill-conditioned when the psychometric slope approaches zero, while 75% is an adequately
located value as it lies in the steepest part of the psychometric function. Second, our experiments applied an
isolated scenario in which the participants were given the particular task of determining the higher-quality
patch, and only the reference and the test patch were shown to them. In ultimate applications such as foveated
rendering, the observer is less sensitive to any distortion. Therefore, we believe that choosing the number of
guiding samples leading to near-threshold distortions was appropriate in this case.

We used a 75% probability as a guide together with cubic fits to our data. We computed the number of guiding
samples for expert subjects as 9.09%, 6.89%, and 4.71% with a 95% CI [7.85 - 10.48], [5.78 - 8.14], [3.60 - 5.94] for
eccentricities 8°, 14° and 20°, respectively. For the naive participants, the results are: 7.93%, 4.57% and 2.06% with
a 95% CI [7.47 - 8.41], [3.98 - 5.29], [1.30 - 2.76]. The confidence intervals were computed by bootstrapping, and
the estimates are shown in Figure 4. As expected, the naive observers were less sensitive to the artifacts than the
experts, and tolerated distortions in synthesized patches with fewer guiding samples. We used the estimated
values to prepare the inputs for the discriminator during GAN training (Section 4.1).

4 METHOD
The results of the perceptual experiments described in the previous section provide the measured thresholds for
structural distortions for a standard observer. We used these data to control the learned manifold of the target
images in foveated image reconstruction. To this end, we present an improved training scheme for the GAN in
which the training data consist of a set of natural and synthesized images.

Our network for the foveated reconstruction uses the Wasserstein GAN [1] training scheme to produce
perceptually optimized reconstructions from subsampled images. The network topology is based on the UNet
encoder-decoder structure with skip connections [43] (Figure 5). This network design is similar to the model
previously used by Kaplanyan et al. [24]. The encoder part of the generator network (𝐺) consists of downsam-
pling residual blocks that use average pooling layers [18]. Each residual block of the encoder consists of two
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Fig. 5. The architecture of our proposed network.

convolutional layers with a filter size of 5 × 5, except for the main branch, where we use a 1 × 1 filter to adjust
the dimensionality. The numbers of filters are 16-32-64-128-128 in each block, respectively. The decoder part is a
mirrored version of the first four encoder blocks with upsampling blocks that use bilinear interpolation instead
of average pooling. The encoder and the decoder are connected by an additional bilinear upsampling layer. We
use LeakyReLU activation with a negative slope coefficient of 𝛼 = 0.2 throughout the network, except for the
final layer of the generator, which uses tanh activation.

The discriminator network or critic (𝐷) is based on PatchGAN [22], with a patch size of 64×64. The discriminator
consists of downsampling blocks similar to the encoder part of the generator (the number of filters: 16-32-64-128-
128). The output of the downsampling blocks is flattened and passed to a fully connected layer that produces a
scalar. Compared with the model developed by Kaplanyan et al. , we use a more compact generator with half
the number of filters in the first and last three blocks. Such a compact generator is made possible by our more
permissive training scheme, which allows for imperceptible deviations from the statistics of the target image. By
contrast, the discriminator loss used by Kaplanyan et al. aims to match the statistics of the target image as closely
as possible. This important difference in our training scheme makes it possible to retain the perceptual quality of
the image with a more compact network. Furthermore, their technique aims to reconstruct the original image,
while our work aims to show the feasibility of using a GAN trained on perceptual data.

4.1 Dataset
We used two separate datasets as inputs to the generator and the discriminator. The input dataset for the generator
consisted of patches from natural images with a size of 256× 256. The patches were generated by cropping images
with random offsets. To maintain a balanced data representation, 50 images were randomly selected from each of
the 1000 classes in the ImageNet dataset [8], which provided us with a total of 50K patches. These images were
later sub-sampled using the void-and-cluster algorithm [59] with sampling rates of 12% for the near periphery
and 0.7% for the far periphery. This choice was made according to a content-aware foveated rendering method
proposed by Tursun et al. [58]. The sub-sampling was followed by bilinear interpolation before the images were
passed on to the generator as input.

We used the texture synthesis method described in Section 3.1 using the results of the perceptual experiment
described in Section 3.2. This dataset consisted of 50K patches that were synthesized using 9.09 % and 6.89 % of
the pixels as guiding samples, respectively, for near and far peripheral regions in addition to the full-resolution
ground truth images.

4.2 Discriminator loss
The training of the discriminator, 𝐷 , uses the same loss function as in the original WGAN design [1]:

ℒ𝑎𝑑𝑣 = 𝐷 (𝑥) − 𝐷 (𝐺 (𝑧)), (2)
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Training with mask Training without mask

Fig. 6. Training with (left) and without (right) an input sampling mask.

where 𝑧 represents the input to the generator network 𝐺 , 𝐷 (𝑥) is the output of the discriminator to real samples
(natural images), and 𝐷 (𝐺 (𝑧)) is the output of the discriminator to reconstructions from 𝐺 . This training is
equivalent to the optimizations performed in previous work when 𝑥 ∈ I, where I is the set of images from
ImageNet.
In our experiments, we updated this formulation by using 𝑥∗ ∈ I∗, where I∗ is the set of images with visually

imperceptible structural distortions, as we described in Section 3.2. We denote the discriminator loss operating
on this manifold of synthesized images with structural distortions by:

ℒ∗
𝑎𝑑𝑣

= 𝐷 (𝑥∗) − 𝐷 (𝐺 (𝑧)). (3)
To ensure the stability of the training of the WGAN, we imposed a soft Lipschitz constraint by using a gradient
penalty [16].

4.3 Generator loss
Our optimization trained generator networks with a weighted sum of different types of losses. For a comprehensive
evaluation of our training scheme, we focused our analysis on three types of generators trained with standard and
perceptual losses. The first generator, 𝐺𝐿2, was trained with a combination of standard MSE loss and adversarial
loss. The second generator, 𝐺𝐿𝑃𝐼𝑃𝑆 , was trained with the learned perceptual image patch similarity loss term.
We used the learned linear weights on top of the VGG network as provided by the authors in their work [70].
Moreover, inspired by [19], we added the generator 𝐺𝐿𝑎𝑝𝑙 that used Laplacian-based loss. It is defined as a
weighted sum of the mean squared error between the corresponding levels of the Laplacian pyramid for the
reconstruction and the ground truth. We assigned weights to each level according to a Gaussian with 𝜎 = 1.0. By
centering the Gaussian around different levels, we were able to place more emphasis on the reconstruction fidelity
of different spatial frequencies in the pyramid decomposition. The main motivation behind the loss was that by
assigning a larger weight at lower spatial frequencies, the network will be given more freedom to hallucinate
high spatial frequencies, which might be desirable in the periphery.
All the generator losses used in our experiments are listed in Table 1.

4.4 Training
Inspired by work by Guenter et al. [15], we considered a foveated rendering scenario in which the image was
divided into three regions with different levels of distortions. We assumed that the boundaries of these three
regions were at the 8° and 14° of eccentricity (represented as the red and green circles, respectively, in Figure 1),
which coincide with the end of the parafovea and its center of perifovea [62]. They divided the image into foveal,
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near periphery, and far periphery regions. Our split was similar to that used in the computer graphics research,
such as by [Guenter et al. 2012, Patney et al. 2016].
While the content of the foveal region was directly transferred from a full-resolution image to ensure the

highest quality, we reconstructed the near and far periphery regions from a sparse set of samples. The input
sampling density for these regions was assumed to be the same as the number of guiding samples estimated
in our experiment with image patches (Section 3). More precisely, we assumed that the near periphery region
was reconstructed from the number of samples required for an eccentricity of 8°, and the far periphery was
reconstructed from the number of samples corresponding to an eccentricity of 14°.

To perform this reconstruction, we trained two distinct generator networks, each of which was responsible for
the reconstruction of the near and far peripheral regions. For benchmarking purposes, we also trained separate
networks for each of the two discriminator losses (using our ℒ∗

𝑎𝑑𝑣
and the standard loss ℒ𝑎𝑑𝑣) and three generator

losses (using ℒ𝐿2
𝐺
, ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
, and ℒ𝐿𝑎𝑝𝑙

𝐺
). The relative weights of the loss terms were set to𝑤𝐿2 = 2000,𝑤𝐿𝑃𝐼𝑃𝑆 = 100,

𝑤𝐿𝑎𝑝𝑙 = 100, and𝑤𝑎𝑑𝑣 = 1. The selected weights were adjusted according to the magnitudes of the individual loss
terms to equalize their contributions to the final loss. This was done by observing the values of the individual
terms during training.
We used the Adam optimizer with a learning rate of 2 × 10−5 (𝛽1 = 0.5, 𝛽2 = 0.999, 𝜖 = 10−8). The training

lasted for 20–30 epochs until convergence, which took approximately one day on an Nvidia 2080 Ti GPU. We
assumed convergence when the training loss reached a plateau. The sample reconstructions from the converged
network were also visually checked against potential instabilities during training.

4.5 Sampling mask
By capitalizing on the potential correlation between subsequent frames, the network introduced by Kaplanyan
et al. uses recurrent connections as an important part of their design to retain information from previously
subsampled frames. This high-level temporal reprojection provides the network with additional information
when the underlying content is only partially observed owing to sparse subsampling. In order to clearly observe
the effects of different training schemes, we used information from only one frame and isolated the reconstruction
from the effects of this flow of temporal information. In our initial experiments, we observed that such a design
decision made the network more sensitive to the sampling mask used in the inputs due to the absence of the flow
of temporal information, which would otherwise have compensated for the lack of information on the true values
of the missing samples. In order to address this issue, as a first attempt, we filled in the missing information
by interpolating the sampled pixels while retaining the sampling mask as a channel of the input. However,
visual inspection revealed visual artifacts collocated with the sampled pixels (Figure 6), and their visibility was
dependent on the weights assigned to the loss terms. The effect was the most pronounced when we used ℒ𝐿2
in training, and the artifacts were less visible with ℒ𝐿𝑃𝐼𝑃𝑆 . As a remedy, we removed the sampling mask from
the training input and provided the generator with the bilinearly interpolated input consisting of RGB channels,
as shown in Figure 5. This solution seemed to be effective in removing visual artifacts from the reconstruction
(please refer to Figure 6 for a visual comparison).

5 RESULTS AND EVALUATION
We evaluated our strategy for training foveated image reconstruction using objective image metrics (Section 5.2)
and a subjective experiment (Section 5.3). In our evaluation, we aimed to show that the benefits of our method
are not limited to a particular selection of the training loss. To this end, we evaluated the generator network𝐺 of
our method with six loss functions that were combinations of LPIPS (ℒ𝐿𝑃𝐼𝑃𝑆 ), L2 (ℒ𝐿2), and Laplacian pyramid
loss (ℒ𝐿𝑎𝑝𝑙 ) terms (Table 1). For the discriminator network, 𝐷 , we benchmarked the performance of networks
trained using our new patch dataset (ℒ∗

𝑎𝑑𝑣
) as well as the original dataset (ℒ𝑎𝑑𝑣).



Learning GAN-based Foveated Reconstruction to Recover Perceptually Important Image Features • 13

Table 1. The loss functions used for training the generator in our evaluations.

Loss function Definition

L2 ℒ𝐿2
𝐺

= 𝑤𝐿2 · ℒ𝐿2 +𝑤𝑎𝑑𝑣 · ℒ𝑎𝑑𝑣

L2 ours ℒ𝐿2
𝐺∗ = 𝑤𝐿2 · ℒ𝐿2 +𝑤𝑎𝑑𝑣 · ℒ∗

𝑎𝑑𝑣

LPIPS ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

= 𝑤𝐿𝑃𝐼𝑃𝑆 · ℒ𝐿𝑃𝐼𝑃𝑆 +𝑤𝑎𝑑𝑣 · ℒ𝑎𝑑𝑣

LPIPS ours ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ = 𝑤𝐿𝑃𝐼𝑃𝑆 · ℒ𝐿𝑃𝐼𝑃𝑆 +𝑤𝑎𝑑𝑣 · ℒ∗

𝑎𝑑𝑣

Laplacian ℒ𝐿𝑎𝑝𝑙

𝐺
= 𝑤𝐿𝑎𝑝𝑙 · ℒ𝐿𝑎𝑝𝑙 +𝑤𝑎𝑑𝑣 · ℒ𝑎𝑑𝑣

Laplacian ours ℒ𝐿𝑎𝑝𝑙

𝐺∗ = 𝑤𝐿𝑎𝑝𝑙 · ℒ𝐿𝑎𝑝𝑙 +𝑤𝑎𝑑𝑣 · ℒ∗
𝑎𝑑𝑣

original

original

original

original

original

original

std foveation

std foveation

std foveation

std foveation

std foveation

std foveation

L
L2
G*

L
L2
G*

L
L2
G*

L
L2
G*

L
L2
G*

L
L2
G*

L
L2
G

L
L2
G

L
L2
G

L
L2
G

L
L2
G

L
L2
G

L
LPIPS
G*

L
LPIPS
G*

L
LPIPS
G*

L
LPIPS
G*

L
LPIPS
G*

L
LPIPS
G*

L
LPIPS
G

L
LPIPS
G

L
LPIPS
G

L
LPIPS
G

L
LPIPS
G

L
LPIPS
G

L
Lapl MM
G*

L
Lapl MM
G*

L
Lapl MM
G*

L
Lapl MM
G*

L
Lapl MM
G*

L
Lapl MM
G*

L
Lapl HH
G*

L
Lapl HH
G*

L
Lapl HH
G*

L
Lapl HH
G*

L
Lapl HH
G*

L
Lapl HH
G*

L
Lapl HH
G

L
Lapl HH
G

L
Lapl HH
G

L
Lapl HH
G

L
Lapl HH
G

L
Lapl HH
G

L
Lapl MM
G

L
Lapl MM
G

L
Lapl MM
G

L
Lapl MM
G

L
Lapl MM
G

L
Lapl MM
G

Fig. 7. Sample reconstructions of nature and architecture images by all evaluated methods for the far periphery. ℒ𝐿𝑎𝑝𝑙 𝑀𝑀

𝐺

refers to the largest weight assigned to medium spatial frequencies, while ℒ𝐿𝑎𝑝𝑙 𝐻𝐻

𝐺
refers to the assignment of the largest

weight to high spatial frequencies. Note that the provided images are shown for the demonstration purposes only. For
appropriate perception cues, the images corresponding to the figure need to be observed in full screen with 36 cpd. They
correspond only to the far peripheral area of vision, spanning from 21° to the corners of the display.

5.1 Visual inspection
Figure 7 presents the results of reconstruction obtained by using differently trained architectures on four images.
For reference, we include the original high-resolution and the standard foveated reconstruction by using an
interpolation with Gaussian weights. For the results of training using Laplacian loss, we introduced a notation
consisting of two letters, ℒ𝐿𝑎𝑝𝑙 𝑋𝑌

𝐺
, where X, Y ∈ {H,M} encode the position of the Gaussian peak at the far
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LLPIPSG*LLPIPSG LLPIPSG*LLPIPSG

Fig. 8. High-frequency content hallucination using ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

, ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ , and standard Gaussian blur.

and near periphery, respectively. The letter H represents the position of the peak located at the first level of
the pyramid (characterized by an emphasis on high spatial frequencies), whereas the letter M represents the
position of the peak located at the fourth level of the pyramid (medium spatial frequencies). For example, the
method denoted by ℒ𝐿𝑎𝑝𝑙 𝐻𝑀

𝐺
refers to a reconstruction obatined by using a network trained with Laplacian

pyramid-based loss. In this case high spatial frequencies were assigned larger weights for the far periphery, and
medium frequencies were given higher importance for the near periphery.

The first observation is that the results of all eight GAN-based reconstruction exhibit clear hallucinated results,
and the reconstruction of very fine details is not exact. Although this is visible with direct visual inspection, such
deviations are less visible when shown in the periphery. Furthermore, all reconstructions introduce high spatial
frequencies and strong edges, but training with ℒ𝐿2

𝐺
loss makes them sparser and more exaggerated. A visual

comparison (Figure 7) between the discriminators trained with and without our synthesized dataset (i.e., ℒ𝐿2
𝐺

vs. ℒ𝐿2
𝐺∗ , ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
vs. ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ , ℒ𝐿𝑎𝑝𝑙 𝑀𝑀

𝐺
vs. ℒ𝐿𝑎𝑝𝑙 𝑀𝑀

𝐺∗ , ℒ𝐿𝑎𝑝𝑙 𝐻𝐻

𝐺
vs. ℒ𝐿𝑎𝑝𝑙 𝐻𝐻

𝐺∗ ) shows that our results include higher
spatial frequencies. We argue that this is due to the flexibility of the discriminator, which penalizes hallucinations
of high spatial frequencies less harshly. This is the desired effect because while the HVS is sensitive to the removal
of some high spatial frequencies in the periphery, it is less sensitive to changes in their positions (Section 2).

To further investigate the characteristics of spatial frequency distribution of our reconstructions, we visualized
the outputs of frequency band decomposition of the Laplacian pyramid and computed the differences of two
layers from the bottom of the pyramid2, which encode the highest frequency band as well as one octave below
it (Figure 8). We observe that our reconstructions provide additional hallucinated high-frequency details that
do not exist in the traditional foveated image reconstruction. Please refer to the supplementary material for an
interactive demo with more results.

5.2 Objective image metrics
Weassessed the perceptual quality of our foveated image reconstruction using the recently introduced FovVideoVDP
metric [33]. FovVideoVDP is a full-reference quality metric that can be used on images and videos. It considers
into account the peripheral acuity of the HVS and the retinal eccentricity of the stimuli while computing quality
scores. FovVideoVDP quality scores are in Just-Objectionable-Difference (JOD) units (JOD ∈ [0, 10]) where
2Please note the difference between frequency decomposition using the Laplacian pyramid and the Laplacian pyramid-based loss function.
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JOD = 10 represents the highest quality, while lower values represent higher perceived distortion with respect
to the reference. We computed FovVideoVDP quality scores of the images generated by our method (ℒ∗

𝑎𝑑𝑣
) and

those reconstructed by networks trained on a standard dataset (ℒ𝑎𝑑𝑣). We provided the original image to the
metric as a reference image. We report the FovVideoVDP quality scores in Table 2 for different peripheral regions
(near and far), and generator loss functions. We compared these scores with those of our training method using
ℒ∗
𝑎𝑑𝑣

and the standard training approach with ℒ𝑎𝑑𝑣 . Our method achieved higher quality-related scores than
the standard approach to training the GAN. The generator was able to reconstruct the images better when we
included perceptually non-objectionable distortions in the training set of the discriminator using our method.

Table 2. FovVideoVDP [33] quality scores (in JODunits) of ourmethod and standard training of GANs for image reconstruction.
The scores were computed for near and far peripheral regions, which represent the images reconstructed at 8° and 14°,
respectively. A higher score implies better visual quality.

Peripheral region Loss function Ours Standard

Near (8°) ℒ𝐿2
𝐺

8.25 8.08
ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

8.19 8.11

Far (14°) ℒ𝐿2
𝐺

6.44 6.28
ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

6.31 6.18

We also evaluated our method by using other objective quality metrics. Although many objective quality
metrics are available for non-foveated quality measurement, objective quality assessment for foveated images is
still an open research problem. In the absence of quality metrics for specific types of image distortions, past work
has shown that the task-specific calibration of currently available objective quality metrics may be a promising
solution [27, 69]. Motivated by this, we used our perceptual data to calibrate existing metrics: L2, SSIM [65],
MS-SSIM [66], and LPIPS [70], separately for different eccentricities. The calibration was performed by fitting the
following logistic function [41]:

𝑦 (𝑡) = 𝑎 + (𝑘 − 𝑎)/(𝑐 + 𝑞 · 𝑒−𝑏 ·𝑡 ) 1
𝑣 . (4)

to reflect the non-linear relation between the magnitude of distortion in the image and the probability of
detecting it, with 𝑎, 𝑏, 𝑐, 𝑘, 𝑞, 𝑣 being free parameters. Inspired by LPIPS [70], we also considered reweighing the
contributions of each convolution and pooling layer of VGG-19 for each eccentricity separately. We refer to this
metric based on the calibrated VGG network as Cal. VGG.

For all metrics, the free parameters (i.e., the parameters of the logistic functions as well as the weights and bias
of VGG-19 layers) were obtained by minimizing the mean squared error in predicting the probability of detection:∑

( ®𝑥, ®̂𝑥) ∈𝑆𝑟

𝑦 (𝑀 ( ®𝑥, ®̂𝑥)) − 𝑃 ( ®𝑥, ®̂𝑥)
2 , (5)

where𝑀 is one of the original metrics, 𝑆𝑟 is the set of distorted and undistorted pairs of images for eccentricity
𝑟 ∈ 8, 14, 20, and 𝑃 is the probability of detecting the difference. Minimization was performed by using nonlinear
curve fitting through the trust-region-reflective and the Levenberg-Marquardt optimizations [4, 30] with multiple
random initializations. Furthermore, we constrained the VGG weights to be non-negative values to maintain the
positive correlation between image dissimilarity and the magnitude of differences in VGG features, as motivated
by the work in [70]. To make our dataset more comprehensive, we added stimuli from an additional experiment
that analyzed the visibility of the blur. For this purpose, we followed the procedure described in Section 3.2.
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To validate our calibration, we performed 5-fold cross-validation and computed Pearson’s correlations between
the ground-truth probability of detecting distortions and metric predictions. Figure 9 presents correlation
coefficients for all trained metrics and eccentricities computed as an average across all the folds. Each bar
shows the measured correlation for the uncalibrated (bright part) and calibrated (dark part) metrics by using the
data from our initial experiment (Section 3.2). For uncalibrated metrics, we used the standard sigmoid logistic
function: 𝑦 (𝑡) = 1/(1 + 𝑒−𝑡 ). We also provide the aggregated results, where the correlation was analyzed across
all eccentricities. The individual scores showed that as the eccentricity increase, there is a decline in performance
in terms of the original metrics. The additional calibration significantly improves the prediction performance
in terms of all metrics. An interesting observation is that LPIPS performs very well for small eccentricities (8°).
For larger ones (14° and 20°), however, its performance is significantly reduced even with the optimized logistic
function. We relate this observation to the fact that LPIPS is not trained for peripheral vision. However, when
the weights of the deep layers of VGG-19 are optimized (Cal. VGG), the performance improved significantly.
This suggests that the above metrics are promising, but depending on the eccentricity, the contributions of the
individual layers to the overall prediction must change. Since our Cal. VGG delivered the best performance in the
tests, we selected it to benchmark the foveated image reconstruction techniques listed in Table 1. The results of
this test for other metrics that we did not use for evaluation are also reported in the supplementary material as a
reference.
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Fig. 9. Pearson’s correlation coefficient of the analyzed meth-
ods. Bright bars: uncalibrated metrics (using standard logistic
sigmoid with the equation: 𝑦 (𝑡) = 1/(1 + 𝑒−𝑡 )), dark bars:
calibrated metrics (fitted to the logistic model using Eq. 4).

After calibration, Cal. VGG is still limited to process-
ing image patches as input. To be able to run Cal. VGG
on full images that cover a larger field of view, it needs
to consider the influence of changes in eccentricity de-
pending on the position of a given pixel in the image.
To support arbitrary values of eccentricity as input,
we linearly interpolated the prediction of the metric
from 8 and 20 degrees to intermediate values of the ec-
centricity between 8-20 degrees. Moreover, in contrast
to our approach in the calibration step, we switched
to a single logistic function whose parameters were es-
timated by using experimental data from all eccentric-
ities. After these extensions, we ran Cal. VGG locally
on non-overlapping patches of the full input image.
To compute a single scalar for the entire image, we took the average value computed across all patches as a global
pooling step. To benchmark different reconstruction methods, we randomly selected 10 publicly available images
at 3840 × 2160 resolution that contained architectural and natural features. Before applying different reconstruc-
tion techniques, we split the images into three regions: fovea, near periphery, and far periphery. We then draw
sparse samples as visualized in (Figure 1). To test the reconstruction quality provided by different sampling rates
used in near- and far-peripheral regions, we analyzed the Cal. VGG predictions for various blending strategies
by changing the eccentricity thresholds at which the transition from near to far peripheral regions occurred.
We computed the predicted detection rates from Cal. VGG for threshold points between 9°-22° for all images.
Figure 10 presents the results. Lower detection rates indicate lower probabilities of detecting reconstruction
artifacts by human observers and, therefore, a higher reconstruction quality. Training the reconstruction using
ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ and ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
yields reconstructions that are the least likely to be distinguished from the original images.

The results generated by using ℒ𝐿2
𝐺∗ delivered a lower detection rate than those generated by using ℒ𝐿2

𝐺
. The

detection rate for our method is significantly lower when the far periphery threshold is selected in the range
of eccentricity of 12°-22° (𝑝 < 0.05). For ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ , this difference in detection rate is significant, compared with
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that for ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

for thresholds between 9°-16° (𝑝 < 0.05). We did not note a significant difference between the
methods (𝑝 > 0.10 for all cases considered) when the network was trained by using Laplacian loss. All 𝑝-values
were computed by using 𝑡-test.

We separated the images into two groups according to their prominent visual features: nature and architecture.
Nature images were considered to form a class containing fewer geometrical structures and more texture-like
areas, e.g., leaves, trees, waves, etc. They usually have a large variety of shapes without any well-defined patterns.
In addition, they exhibit a high level of variance in colors and structure. Visual distortions in nature images would
be less likely to result in perceivable changes because the variance in color and structure may have a masking
effect on the distortions. On the contrary, architecture images mostly contain structures, like human-made objects,
such as buildings, and larger uniform areas with clear visual boundaries. They usually have many edges and
corners, which makes it more challenging to have a perceptually plausible and faithful reconstruction from sparse
image samples. Distorting such images is more likely to lead to the mixing of visual information from different
areas, and this is easy to detect even in the peripheral region of vision. Owing to these distinct properties of
nature and architecture images, we separately evaluated the results on these two types of images separately. The
results show that the difference of detection rate between our method and the standard training, compared to the
overall trend, is more pronounced for nature images and less pronounced for architecture images. The results are
available in Figure 6 of the supplementary material.

5.3 Subjective experiments

LL2
G*

LL2
G

LLPIPS
G*

LLapl MM
G*

LLapl MM
G

LLPIPS
G

Fig. 10. Detection rates according to the objective Cal. VGG
metric with increasing radius of the far periphery. Lower values
indicate a higher quality of reconstruction.

The psychovisual experiment used to derive the data
for training our reconstruction methods was per-
formed involved 5 participants. Although it is com-
mon to use few participants in such experiments due
to their complexity, and given that they should cap-
ture the general properties of the HVS, such experi-
ments do not investigate potential differences within
the population. In addition, it is not clear whether the
method derived from the perceptual data is effective.
Therefore, to further validate our claims regarding
the new training strategy, and verify the importance
of the improvements observed when using calibrated
metrics, we conducted an additional subjective user
experiment, in which naive participants were asked
to directly compare different reconstruction methods.

Stimuli and task. We used the 10 images that were
used in our evaluation on objective image metrics (Sec-
tion 5.2). They were sub-sampled and reconstructed by using ℒ𝐿2

𝐺∗ , ℒ𝐿2
𝐺
, ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ , and ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

as shown in Figure 1.
In each trial, the participants were shown the original image on the left and one of two reconstructions on the
right half of the display. The two halves were separated by a 96-pixel-wide gray stripe. The participants could
freely switch between reconstructions by using a keyboard. They were asked to select the reconstruction that
was more similar to the reference on the left by pressing a key. During the experiment, the images followed the
eye movements of the participant, as shown in Figure 11. In contrast to the calibration experiment performed
in Section 3.2, in this experiment we showed full images to the participants, each covering half of the screen.
Fixation was enforced as in the calibration experiment described in Section 3.2. Each trial took 15 seconds on
average. The total duration of the experiment was around 15 minutes.
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Participants. 15 participants with normal or corrected-to-normal vision took part in the experiment. All were
naive for the purposes of the study and were given instructions at the beginning. Each participant was asked to
compare all pairs of techniques for each image (60 comparisons per participant).

Results. To analyze the results, for each pair of techniques, we computed a preference rate of method A over
method B. The rate expresses the percentage of trials in which method A was chosen as visually more similar to
the original image. Table 3 shows the preference rates obtained by using networks trained using our procedure
(ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ , ℒ𝐿2
𝐺∗ ) in comparison with the standard procedure (ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
, ℒ𝐿2

𝐺
). We report the results for all images (last

column) and do so separately for nature and architecture images. We used the binomial test to compute the
𝑝-values. The reconstructions obtained by using a network trained with our strategy are preferred in 57% of
the cases (𝑝 = 0.013). The difference is significant for ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ with a 59% preference (𝑝 = 0.04). In the context of
different image classes, our method performed well on nature images, both when we consider ℒ𝐿2

𝐺∗ and ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗

separately and when we consider them jointly (for each case preferred in 75 % of cases, 𝑝 < 0.001). On architecture
images, we observe the preference for ℒ𝐿2

𝐺
(63%, 𝑝 = 0.037). For all techniques, our method is preferred in 40 %

of the cases (𝑝 = 0.018). This is consistent with the results of Cal. VGG (Section 5.2), where our method had a
lower probability of detection of nature images and a similar probability of detection of architecture images.
We hypothesize that there might be several reasons for its poorer performance on architecture images. First,
architecture images contain objects with simple shapes, uniform areas, edges, and corners. Such features might
not have been represented well in our calibration, where we used 256 × 256 patches, whose size was limited
to avoid testing the visibility across a wide range of eccentricities. Furthermore, we believe that distortions in
the visual features of simple objects are much easier to perceive than those in natural textures, which are more
random. This problem might have been aggravated because our calibration considered both groups together
and did not make any distinction when modeling the perception of artifacts for them. This problem might be
solved by using different numbers of guiding samples for different classes of images when generating the dataset
for training GAN-based reconstruction. However, this would require more careful data collection for the initial
experiment and a more complex model that can predict the number of guiding samples based on the image
content. Once these challenges have been addressed, the proposed approach can yield a more accurate dataset
and can be used to train a single architecture that can handle different types of images.

Figure 12 shows the preferences for the individual methods compared with those for all other training strategies,
including different loss functions, i.e., ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ , ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ , ℒ𝐿2

𝐺
, and ℒ𝐿2

𝐺∗ . In the experiment with experts (left), ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗

attained the highest preference of 38% (𝑝 < 0.001) while ℒ𝐿2
𝐺

recorded the lowest preference (24%, 𝑝 < 0.001).

Gaze location

Fig. 11. An example of the stimuli shown during the experiment. The image follows the gaze point, which is marked with the
green dot.
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Table 3. Preference rates of the methods ℒ𝐿2
𝐺∗ , ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ over ℒ𝐿2
𝐺
, ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
when trained using the data collected from the

expert group. The values were computed by taking the average across participants. The errors correspond to the standard
error of the mean.

Nature Architecture All
ℒ𝐿2
𝐺∗ vs ℒ𝐿2

𝐺
0.75 ∓ 0.05 0.37 ∓ 0.04 0.56 ∓ 0.03

ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ vs ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
0.75 ∓ 0.05 0.43 ∓ 0.07 0.59 ∓ 0.05

All ours vs All 0.75 ∓ 0.04 0.40 ∓ 0.04 0.57 ∓ 0.03

Nature Architecture All
0.0

0.1

0.2

0.3

0.4

Nature Architecture All
0.0

0.1

0.2

0.3

0.4

Experts Naive

Fig. 12. Preference rates of the methods trained using data gathered from the expert group (left) vs. the naive group (right) in
the calibration experiment (Section 3.2). The scores on the 𝑦-axis represent the number of times a given method was selected,
divided by the total number of trials of the experiment. The error bars show the standard error of the mean. The values were
computed by taking an average across participants.

When divided into classes, ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ and ℒ𝐿2

𝐺∗ were the most preferred methods for natural images, with values of
41% (𝑝 < 0.001) and 37% (𝑝 = 0.003), respectively. The other methods had lower preference values - 22% for ℒ𝐿𝑃𝐼𝑃𝑆

𝐺

(𝑝 < 0.001) and 20% for ℒ𝐿2
𝐺

(𝑝 < 0.001). ℒ𝐿𝑃𝐼𝑃𝑆
𝐺

was the most preferred on architecture images (37%, 𝑝 = 0.005),
followed by ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ (35%, 𝑝 = 0.032). The ℒ𝐿2
𝐺∗ was selected the fewest number of times (21%, 𝑝 < 0.001). All

𝑝-values were computed by using the binomial test, and the remaining results were not statistically significant.
The experiment, when repeated with naive participants (right), yielded a different threshold as a function of the
guiding samples needed for the appropriate foveated reconstruction. In particular, the values related to 8° and
14° changed from 9.09 to 7.93, and from 6.89 to 4.57, respectively. This means that for a standard observer, the
number of samples needed to generate an image of fixed quality is higher than the samples needed for an expert
observer. Texture synthesis was the initial step of our pipeline. For this reason, we trained all our networks again
and we repeated the validation experiment with the new reconstruction. The results are presented in Table 4 and
Figure 12 (right). The new experiments showed that while our technique maintained a slight advantage through
ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ over the standard method on nature images, our reconstructions delivered the worst performance on

architecture images.
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Table 4. Preference rates of the methods ℒ𝐿2
𝐺∗ , ℒ𝐿𝑃𝐼𝑃𝑆

𝐺∗ over ℒ𝐿2
𝐺
, ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
when trained by using the data gathered from the

naive group. The values were computed by taking the average across participants. The errors correspond to the standard
error of the mean.

Nature Architecture All
ℒ𝐿2
𝐺∗ vs ℒ𝐿2

𝐺
0.38 ∓ 0.05 0.32 ∓ 0.05 0.35 ∓ 0.02

ℒ𝐿𝑃𝐼𝑃𝑆
𝐺∗ vs ℒ𝐿𝑃𝐼𝑃𝑆

𝐺
0.59 ∓ 0.04 0.17 ∓ 0.06 0.38 ∓ 0.04

All ours vs All 0.49 ∓ 0.03 0.24 ∓ 0.04 0.36 ∓ 0.03

5.4 Discussion
The results of the final evaluation demonstrate that with a successfully derived training dataset containing
near-threshold distortions, our GAN-based training strategy can improve the quality of the reconstructions.
The benefits, however, are observed with a more conservative calibration (Section 3) performed by experts.
When calibration data from the naive participants are used, the final preference shifts towards the standard
reconstruction strategy. This shows that our strategy works under conservative calibration conditions. We believe
that this owes itself to the potential limitations of our calibration, which was performed on small patches, while
larger patches may render some artifacts more prominent. However, there is a trade-off between using small
patches and obtaining localized information about the sensitivity to distortions for a particular eccentricity, and
making the patches larger and losing this property. In future work, it would be interesting to investigate better
calibration strategies for our technique.
As described, our technique can be directly applied to train GAN-based foveated image reconstructions. Our

experiments demonstrate that the same network architecture with the same input provides higher-visual-quality
reconstructions if our training strategy is used than otherwise. This applies directly to techniques such as the one
proposed by Kaplanyan et al. [24]. Because the density of the input sampling can be changed, we argue that our
training can also reduce the number of input samples while preserving quality, which will improve the efficiency
of the entire image generation pipeline.

6 CONCLUSIONS AND FUTURE WORK
Currently available techniques for foveated image reconstruction use perceptual loss to guide network training to
capitalize on perceptually important image features. The goal of this work was to inject perceptual information
into the discriminator network. To this end, during training, we provided the discriminator with images containing
distortions that are imperceptible to a human observer. This allowed the discriminator to inherit the properties
of the HVS encoded in the training dataset. Our new dataset contains images with invisible spatial distortions
based on texture synthesis. We argue that such distortions are much closer to artifacts introduced by GAN-based
reconstruction than the previously considered blur. Moreover, the new dataset allowed us to train several image
metrics to improve their predictions of stimulus quality presented in the periphery.
We studied the suitability of the new training strategy for foveated image reconstruction. In future work, it

is essential to extend this investigation to video content as this may yield benefits when the sensitivity of the
HVS to temporal artifacts is incorporated. We trained separate networks for the near and far periphery. While
this makes the training procedure easier, a more practical solution is to train one network to handle spatially
varying density. An alternative solution to attain this goal is to use a fully convolutional network in the log-polar
domain [49, 63]. We also did not focus on computational performance. At present, our unoptimized inference
takes 3 seconds on our hardware. Although previous work [24] has shown the feasibility of using GAN in such
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scenarios, computational efficiency remains an important concern. We believe that making networks and their
training aware of the limitations of human perception will be important to close the gaps.
Another exciting direction of research is to design a foveated image metric that accounts for a wide range

of effects. While work by Mantiuk et al. [33] has taken this approach, they targeted image quality instead of
the visibility of distortion. The challenge here lies in collecting large-scale perceptual data with eye-tracking-
based information that can help determine the visibility of distortions. Even though our dataset contained this
information, it is not sufficient to train a general-purpose visibility metric for both foveal and peripheral vision.

Finally, we believe that the idea of supplying the discriminator in the GAN architectures with images containing
near-threshold distortions during training extends beyond applications to foveated image reconstructions. We see
it as a more general strategy for training perception-aware GAN-based techniques for the creation of graphical
content. Our work considered texture synthesis as a technique suitable for creating controlled distortions relevant
to our application. However, it is not ideal for capturing other characteristics of perception, such as the sensitivity
to temporal changes, color, and depth, that might be relevant in different applications. It would be interesting if
other researchers followed our procedure and included these aspects in the training of generative-adversarial
networks to verify their benefits.
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