Gloss-aware Color Correction for 3D Printing

JORGE CONDOR, Università della Svizzera italiana, Switzerland
MICHAL PIOVARCI, ISTA, Austria
BERND BICKEL, ISTA, Austria
PIOTR DIDYK, Università della Svizzera italiana, Switzerland

Color and gloss are fundamental aspects of surface appearance. State-of-the-art fabrication techniques can manipulate both properties of the printed 3D objects. However, in the context of appearance reproduction, perceptual aspects of color and gloss are usually handled separately, even though previous perceptual studies suggest their interaction. Our work is motivated by previous studies demonstrating a perceived color shift due to a change in the object’s gloss, i.e., two samples with the same color but different surface gloss appear as they have different colors. In this paper, we conduct new experiments which support this observation and provide insights into the magnitude and direction of the perceived color change. We use the observations as guidance to design a new method that estimates and corrects the color shift enabling the fabrication of objects with the same perceived color but different surface gloss. We formulate the problem as an optimization procedure solved using differentiable rendering. We evaluate the effectiveness of our method in perceptual experiments with 3D objects fabricated using a multi-material 3D printer and demonstrate potential applications.

CCS Concepts: • Computing methodologies → Reflectance modeling.

Additional Key Words and Phrases: color, gloss, perception, color compensation, color management

ACM Reference Format:

1 INTRODUCTION

Accurate color reproduction is fundamental for many applications ranging from display technology to fabrication, and art. A key problem in color reproduction is ensuring the final visible color remains consistent across different media. To this end, extensive color management systems were developed [X–Rite 2005]. Typically, the systems contain a small set of well-behaved colors that achieve consistent reproduction on both digital and physical devices.

Unfortunately, accurate color reproduction still remains a challenging endeavour due to the complex nature of color perception. To predict a visible color one has to account for both the surface properties of the observed object as well as the ambient illumination. The effects of illumination are well known and understood with ready-made models available [Changjun et al. 2017; Moroney et al. 2002]. The interaction between visible color and material is significantly more complicated. Traditionally the color was assumed to be governed by sub-surface scattering. Yet practitioners observed that by applying translucent varnishes of different glossiness the same color can appear more or less saturated [Jakob 2010]. While this effect is sufficiently strong to motivate manufacturers to provide two sets of color references1, there is no systematic study on how exactly different glossy finishes affect the perceived color of a surface.

In this work, we investigate the coupling between color and gloss perception. We start by investigating how the surface finish affects
We further provide an end-to-end differentiable rendering pipeline that can automatically compensate for the perceived color shifts. To validate the pipeline, we run several studies investigating its performance on varying colors, geometries, and environmental conditions. Finally, we showcase an application of our novel color management tool towards 3D printing.

2 RELATED WORK

The human visual system (HVS) is one of the most studied senses [Hutchinson et al. 2019]. In this section, we provide a brief overview of color and gloss perception work and delegate the reader to more exhaustive surveys. We then focus more extensively on coupled color-gloss perception studies and the state-of-the-art in color-gloss compensation for fabrication.

Color Perception. Color is one of the key visual attributes of a surface. As such many works have attempted to characterize the perceived color differences. The seminal work of Hunter and colleagues [1958] proposes a perceptually uniform color space, i.e., a color space where the Euclidean distance corresponds with the perceived difference. This gave rise to the very first color difference formula the so-called ΔE76. Since then many improvements have been proposed [Chang et al. 2017; Moroney et al. 2002; Sharma et al. 2005]. In this work we rely on the most widely used version of color difference, the ΔE00 [CIE 2001]. For a more detailed overview of color perception we refer the reader to the classical book of [Wyszecki and Stiles 1982].

Gloss Perception. Next to color, gloss is perhaps the second most important visual attribute of a surface [Anderson 2011; Fleming 2014]. Proper modeling of perceived gloss is a long-standing problem [Marlow et al. 2012]. Over time it was shown that gloss depends on the ambient illumination [Zhang et al. 2020], overall object geometry [Serrano et al. 2021], bumpiness of the surface [Ho et al. 2008], and surface curvature [Kim et al. 2012]. By contrast, angle of illumination does not impact gloss perception in flat surfaces when illuminated by point light sources [Obein et al. 2004]. We take inspiration from prior work in the design of our stimuli. Our correction model relies on natural illuminations that were shown to perform best for visual gloss estimation [Fleming et al. 2003]. With regards to geometries, we base our correction on a smooth object with overall low curvature commonly used to preview car lacquers in the automotive industry. In validation studies, we explore how our model generalizes to different illumination conditions [Pereira and Rusinkiewicz 2012], and more complex geometries [Havran et al. 2016]. For a more detailed overview of gloss perception, we refer the reader to the excellent survey of [Chadwick and Kentridge 2015].

Color-Gloss Coupling. To investigate the effect of surface color on perceived gloss researchers conducted trials in both virtual [Pellicci et al. 2000] and real environments [Samadzadegan et al. 2014]. The results suggest that the perceived gloss is relatively constant under hue and saturation changes. On the other hand, lightness change directly correlates with perceived gloss, with darker materials appearing glossier.

The interplay between gloss and perceived surface color has received little scientific interest in the past and its conclusions are conflicting. While some studies claim that there is in fact a small perceptual color shift due to the presence of varying levels of gloss in objects [Giesel and Gegenfurtner 2010; Xiao and Brainard 2008], others attribute it to just a measurable change in contrast and lightness, and affirm it can be controlled via measuring the variation between the specular and diffuse components [Dalal and Natalie-Hoffman 1999; Ma et al. 2009]. The studies are based on the assumption that gloss is a physical property of objects which can be defined by a single objective measure, in this case, the specularity of a surface. However, it has been shown that such description is insufficient and gloss is primarily a perceived quality [Chadwick and Kentridge 2015]. In contrast, our psychophysical experiments investigate the color-gloss interplay as a perceptual problem that depends on cues such as geometry and illumination.

Color-Gloss Fabrication. In computer graphics, accurately reproducing the target appearance of digital assets is one of the longest standing challenges. Recent works investigate individual aspects such as color [Babaei et al. 2017; Elek et al. 2017; Sumin et al. 2019], translucency [Brunton et al. 2018; Urban et al. 2019], or gloss [Elkhuizen et al. 2019; Piovarči et al. 2020]. In the more traditional 2D printing context the visible difference in color reproduction based on glossiness of the substrate is a known problem [X–Rite 2016]. State-of-the-art research and commercial solutions propose a correction of the perceived color based on colorimetric measurements [Baar et al. 2014; Datacolor 2022]. The key idea is that the specular reflections will reflect more light towards the measurement sensor and the final color will appear brighter and less saturated. However, colorimetric data alone is not well suited to estimate the shift in perceived color. Measurements only account for light scattering in the varnish surface which reduces the problem to adding/removing light. However, the added/removed light would be entirely dependent on the object’s illumination, and would not consider any potential perceptual interaction. In contrast, our model takes into account the full picture: objects’ color, gloss, illumination, and geometry. We demonstrate that our model can correctly estimate a significant perceived difference in color due to varying levels of gloss even for cases where colorimeter devices would not measure any.

3 GLOSS-COLOR INTERACTION EXPERIMENT

To assess how humans perceive the colors of objects with different gloss levels and derive a perception-informed method for correcting potential color shifts, we first conducted a perceptual experiment.

3.1 Methods

Our methodology is inspired by previous literature on color perception, and more specifically, color constancy [Arend and Reeves 1986]. We perform a color-matching experiment where subjects match color patches with a color of an animated geometry rendered under complex illumination. We vary both color and surface finish
which enables us to assess perceived color shifts as a function of gloss level.

Stimuli. A single stimulus consisted of a video of a rotating car geometry rendered under complex illumination. Each video was rendered using a physically-based path tracer [Nimier-David et al. 2019] in 1080 × 1080 resolution and was shown in the center of the screen using its original size (Figure ??, top).

We considered 16 different base colors and 5 different gloss levels (Figure ??, bottom). For the gloss levels, the BRDF used for rendering was obtained by measuring samples of different varnishes [Piovarchi et al. 2020] and fitting them to the Cook-Torrance model [Cook and Torrance 1982] and a GGX normal distribution [Trowbridge and Reitz 1975]. Another two were chosen manually as very matte and glossy materials. We used all color-gloss combinations leading to 80 different stimuli. For further information on the stimuli and hardware, we refer to the supplemental material.

Previous studies [Giesel and Gegenfurtner 2010; Granzier et al. 2014; Xiao and Brainard 2008] rely on standard color spaces, such as CIELAB, HSV, and HSL, we rely on color attributes of a recent color appearance model, CIECAM16. The advantage of such an approach is that the model already accounts for many perceptual effects related to color perception (i.e. the Abney effect). The use of CIECAM16 for the construction of our reference grids also allowed us to maintain a constant perceived hue across the whole grid.

Task. In each trial, the participants were shown a continuous video of one rendered geometry. On the right-hand side of the video, a 3 × 3 grid of similar colors was shown, which was part of a bigger 21 × 21 grid through which the subjects could navigate lightness and chroma axis from the CIECAM16 color appearance model [Changjun et al. 2017] at a fixed distance of 1.35 ΔE00 between row-adjacent pairs. The task was to navigate this table using the arrow keys to find the color they perceived as closest to the color of the car. All participants performed the task for 80 stimuli without repetitions, at a randomized order and initial grid positions. The experiment took between 20 and 40 minutes, and participants were instructed to take as much time as needed. They were also allowed to take breaks in case of fatigue. We got 11 participants, which we tested for color acuity [Ishihara 1917] [Farnsworth 1943]. For more details on participants, we refer to the supplemental material.

Discussion. Our experiment addresses some of the limitations of previous works [Dalal and Natale–Hoffman 1999; Ma et al. 2009; Xiao and Brainard 2008]. We use rotating references, which prevent participants from performing pixel-to-pixel comparisons and provide additional visual cues for disambiguation of view-dependent effects, such as reflections and highlights, from the pure surface color. Forced motion on the screen also better simulates natural viewing conditions, where the subjects are expected to move, and improves gloss perception [Scheller Lichtenauer et al. 2013]. Illumination is a significant factor in material perception [Fleming et al. 2003] and simulate natural viewing conditions.

Crucially, we use color patches to match the color of the rendered geometry. An alternative approach is to use rendering for both test and reference. Since on-the-fly rendering is prohibitively expensive (if high physical accuracy is desired), such an approach would need to rely on image blending, which does not account for the non-linearity between the base color of a sample and on-surface color [Xiao and Brainard 2008]. Our approach avoids this problem by analyzing color shifts between matched patches.

A significant difference from other studies is the color dimensions we used in our experiments. While many previous works [Giesel and Gegenfurtner 2010; Granzier et al. 2014; Xiao and Brainard 2008] rely on standard color spaces, such as CIELAB, HSV, and HSL, we consider color attributes of a recent color appearance model, CIECAM16. The advantage of such an approach is that the model already accounts for many perceptual effects related to color perception (i.e. the Abney effect). The use of CIECAM16 for the construction of our reference grids also allowed us to maintain a constant perceived hue across the whole grid.

Previous studies [Giesel and Gegenfurtner 2010; Granzier et al. 2014] and our own early experiments indicated that people do not perceive a change in hue among varying degrees of gloss, other than the expected shift from altering other color parameters such as saturation or lightness (i.e. Abney effect [Abney 1909]). By limiting the search space this way, we make our experiment easier to navigate and analyze.

3.2 Data Filtering

Even though our experiment considers only two color attributes (lightness and chroma), the experiment proved to be challenging for participants (see Figure 3 for data spread). Apart from normal experimental variability, some subjects occasionally skipped color pairs accidentally, which partially explains some clear outliers. Therefore, we apply outlier removal. However, the problem with visualizing data in lightness/chroma axis is that the color space of our grid is not linear, as a constant perceived difference between co-linear colors row-wise is ensured but it can drastically vary between colors diagonally and column-wise. A better way of visualizing this data is...
to compute a confusion matrix with the pairwise distance of every data sample to the rest (Figure 3). We filtered data by creating a distribution with the cumulative sum of ΔE00 differences of each sample to the rest of them for every given color-material pair. We performed the Shapiro-Wilk normality test on these distributions, which showed that most (77.5%, \(p > 0.05 \)) followed normal behavior. We then rejected samples above \(\mu + \sigma \) (84.1% of the samples are kept). The result is akin to fitting a 2D Gaussian to reject samples outside of the main cumulus or “blobs”, rejecting data points far away from the main consensus.

3.3 Results and discussion

Gloss-color correlation analysis. First, we look for correlations between gloss levels and any other color parameter. Previous research has shown some degree of correlation between perceived gloss and fitted model material roughness [Pellacini et al. 2000], hence we will use it as our measure of gloss to facilitate the analysis. The results can be seen in Figure 4. We analyze picked colors according to the CIECAM16 color appearance model, of which we show the two most significant axis, lightness and saturation. For each color, we plot the average value of the different color components across all test subjects against the roughness of the sample. A single reference is created with the roughest or most matte sample by averaging all answers for that given color-material. The Pearson correlation test reveals a very strong negative linear correlation between gloss and perceived saturation shift \((p = -0.9249)\).

In order to answer whether this shift suggests a perceptual effect or not, we looked at how subjects interacted with the experiment. For the given color matching task, there are several approaches to assess a sample’s global color. One could average across various pixels, fixate on specific areas or obtain a global assessment that does not closely match any particular area of the object. We analyze this by computing the ΔE00 of the average picked color to every pixel of the reference videos for every color-material pair (Figure 5). We found that test subjects tended to match their colors with a specific area in our objects, one directly illuminated by the most prominent light source in the scene and with no self-shadowing, reflections or high frequency illumination of any kind, an area of “constant” color. At the same time, their choice tended to be substantially more saturated and darker the glossier the sample was, and likewise is more saturated than the global average of the whole surface, discounting just specular highlights. This is in agreement with previous color research on the topic of global color assessment [Sunaga and Yamashita 2007] and suggest the perceptual effect of gloss over color stems from the different ways of matching and interacting with the range of colors displayed on a given surface, which changes with gloss.

4 GLOSS-AWARE COLOR COMPENSATION FOR 3D PRINTING

Our psychophysical experiment revealed an interaction between surface gloss and the perceived color. We now seek to formulate a computational method for correcting the perceived color shift. The input to our method is a color and two glossy finishes, an original and a novel one. The output is a new color that when viewed under the novel gloss appears the same as the original color under the original gloss. Unfortunately, deriving the correction directly from experimental data is challenging as it depends on the complex interplay between objects geometry, color, gloss, and the environment illumination. Instead, we assume that the perceived color shift for different gloss levels can be largely explained by physical changes in the surface appearance and how people judge the color of the complex surface under complex illumination. In this section we describe how we correct for the perceived color shift of surfaces with varying gloss.

4.1 Rendering

To model the complex interplay between surface geometry, illumination, and the material properties we rely on physically-based rendering [Jakob et al. 2022]. The materials we aim to model are highly translucent plastics potentially covered with a thin dielectric
varnish, which we use to generate different surface finishes in our applications. We model our materials from captured data using the Cook-Torrance model with GGX distribution [Trowbridge and Reitz 1975]. For rendering, as in our perceptual experiment, we use these captured BRDFs with Mitsuba’s rough-dielectric plugin, which we apply on a generic geometry. For a more in-depth look as to why this is a good approximation of physical behavior, please see the supplemental material. Finally, we illuminate the scene with high-resolution photometrically captured gray-scale environment maps representing natural and complex illumination conditions.

4.2 Computing Reference Color
To drive the optimization of the color correction, our method requires a strategy to aggregate the rendered spatially-varying surface appearance into one single color for comparison. This strategy should ideally resemble the way the HVS assesses the color of complex objects. Following previous research [Sunaga and Yamashita 2007], and based on the findings of our perceptual experiment, we assume that subjects discard regions that are largely affected by the view-dependent illumination effects such as reflections, sheens and specular highlights, and use a simple strategy that computes a map that excludes these regions from the mean color computation based on the used varnishes, while biasing towards higher saturation colors when presented with a same-hue, spatially varying color appearance. We formulate this as follows:

\[
M(c, f_g, f_m) = \bigcap_{b \in B} (M_b \circ M_b)_{-b},
\]

where \(M = M(\mathbf{c}, f_g, f_m)\) is the mean color of the geometry, \(f_g\) and \(f_m\) are roughness coefficients for a glossy and matte varnish, respectively. \(R^{\text{sat}}\) is the saturation of a rendered image, \(M\) behaves similarly to the participants of our experiments and filters out colors where the saturation is not significantly affected by view-dependent effects, \(R^{\text{L}}\) is the lightness of a rendered image, with \(M\) acting as a mask that removes sheens and bright specular reflections based on the threshold \(\mu = -0.05\), which enables small color variations but fundamentally excludes these effects. Both masks are combined through a Hadamard product (\(\circ\)). Finally, we perform a binary erosion, where \(B\) is the binary erosion structuring element and \((M_b \circ M_b)_{-b}\) denotes the translation of our mask by \(-b\), the morphological structuring element at a given pixel position. This reduces the impact of rendering artifacts (i.e., fireflies). The binary mask \(M\) needs two different gloss levels to estimate the view-dependent effects. In practice we found out the mask shows little variation with respect to the difference in gloss between the two varnishes and across different colors. However, for maximum accuracy during optimization we pre-compute it at the beginning for every color and material pairs. Our resulting masks closely follow the heatmaps (Figure 5), indicating that our perceptually-motivated heuristic models the color-gloss interaction accurately.

4.3 Optimization
To minimize the perceived difference between reference colors of two objects with varying glossy finish we rely on differentiable rendering [Jakob et al. 2022]. Our optimization seeks to match the perceived color of a sample with a specific gloss appearance while preserving the hue of the desired color. More formally it attempts to minimize our loss function \(L\) as defined below:

\[
\min_c L = L_1 + w_{reg}L_2,
\]

where

\[
L_1 = \frac{1}{\mathcal{P}} \sum_{p \in \mathcal{P}} ||[M \circ R(c, f)](p) - [M \circ R(c, f)](p)||_2^2,
\]

\[
L_2 = ||c_{\text{hue}} - c_{\text{hue}}||_2^2,
\]

\[
M = M((c, \min(f_g, f_m), \max(f_g, f_m)).
\]

where we optimize for a new color \(c\) for a target gloss \(f_t\) that matches the perceived color of reference color \(c_r\) with reference gloss \(f_r\). The loss function \(L\) is composed of two different terms. \(L_1\) is defined as the per-pixel (\(p\) from set of image pixels \(\mathcal{P}\)) mean squared difference between the Hadamard product of our perceptually inspired pooling strategy \(M\) and both the target appearance’s render \(R(c, f_t)\) and currently proposed compensation’s render \(R(c, f_t)\), the second term is strictly a hue loss computed in CIECAM16 space, between the base rendering color of the target appearance, and \(w_{reg} = 0.05\) is a small regularization weight. Neither our psychophysical experiment nor previous works [Giesel and Gegenfurtner 2010; Xiao and Brainard 2008] have found any correlation between gloss and perceived hue, which is why it is crucial to get the exact same hue across both reference and target. This loss term ensures that any remaining error does not manifest in hue, as slight shifts in chroma or lightness are more acceptable. The optimization takes around 5 minutes for a given target color-gloss. For more details about the parameters and settings please see the supplemental material.
Fig. 6. Method overview. First, we capture and fit the BRDF of the materials. We then render a geometry with both target and reference finishes, with the desired color. A mask is computed from them, selecting the pixels that will be entering our optimization stage. We use differentiable rendering and our custom color loss to obtain a surface color for our target gloss that will be perceptually equivalent to the desired one in the reference gloss.

5 RESULTS AND APPLICATIONS

In this section, we start by validating our correction on a wide range of colors. Next, we compare our correction method with state-of-the-art color-gloss compensation. To further validate our method, we conduct several ablation studies. Finally, we demonstrate an application of our correction to 3D printing.

Method. For the evaluation we consider a forced choice experiment. We present the participants with a design manufactured with a reference color and finish (i.e., matte). We then show them two possible reproductions using a different finish (i.e., glossy) and either the reference color or our compensation. We then ask the participants which design is preferred. To physically realize our stimuli we use the J750. To validate that the printed colors lie inside the gamut of the device, we rely on a color validation tool provided by the manufacturer. After printing, the objects are cleaned and varnished.

Participants. We recruited 18 participants (14 male, 4 female) aged between 20 – 31 with normal or corrected to normal vision and perfect color acuity [Farnsworth 1943; Ishihara 1917].

5.1 Validation Experiment

For the validation experiment, we manufactured 48 reference stimuli (24 color pairs) and 24 proposed compensations (one for each pair). We further divided our stimuli into 3 different experiments. 8 samples were varnished Edding Clear Matte, while their pairs were varnished Edding Clear Gloss. Our aim was to compute a sample that, when varnished with Edding Clear Gloss, would be perceived as having the same color as the one varnished in matte. In other 9 samples, the target was changed from Edding Clear Matte to Schmincke Matte, with the same purpose, and varnish-specific compensations were proposed and printed for these pairs. Finally, the last 7 samples attempted the opposite target (matching a reference in Edding Clear Gloss while being varnished in Edding Clear Matte). A small subset of these color triads, as presented to test subjects, can be seen in Figure 9, while the full results of our study are shown in Figure 10, left.

We can observe that our correction achieved significant improvement over the reference color. On average, around 90 percent of the participants preferred the corrected colors (p < 0.001) for both Schmincke and Edding Clear varnishes, even with large corrections of up to 8.737 ΔE00. In the cases where our performance was below average, it never dropped under 50% suggesting our correction never worsened the perceived mismatch between the colors based on varying glossy finish. However, results do suggest worse performance for the reference in gloss, target in matte compensation (3rd column 10, left), while still being statistically significant (p < 0.001). We attribute the loss in performance to the direction of the shift towards more saturated colors that can fall outside of the printing gamut.

5.2 Comparison with State-of-the-Art

State-of-the-art research and commercial methods rely on computing corrections based on colorimetric measurements [Baar et al. 2014; Datacolor 2022]. To compare with them, we prepared a set of 8 samples with reference Edding Clear Glossy finish compensated towards Edding Clear Matte. We experimentally verified with an xRite i1 Pro 3 spectrometer featuring a 45/0 measurement geometry that the glossy and matte colors have the same measured value (measured ΔE00 < 1 calculated in CIE L’“a”b” using a D65 illuminant and the 2° observer). As such, state-of-the-art methods would propose no correction. In contrast, our system for the same colors proposes a correction of up to 8 ΔE00. The results of the experiment are shown in Figure 10, left.

We can see that in each investigated case, participants preferred our correction (p < 0.001), which demonstrates a shift between perceived colors was indeed present despite the lack of significant measured colorimetric differences. This demonstrates that our method has a closer agreement with human perception of color and gloss than prior work. We attribute our improvement to the more complex estimation of reference color that includes the effects of geometry, illumination, and perception, while also addressing the physical source of these shifts through physically-based rendering, as opposed to attempting to assess gloss through a single measurement regardless of its physical origin.
5.3 Ablation Study on Geometry
Our color correction method has been validated on a single geometry that manifests mostly smooth features. Since the effect of geometry on perceived gloss is well known [Serrano et al. 2021], we investigate the robustness of our method to changes in geometry. Based on prior work, we employ two geometries, bunny geometry with higher frequency features [Ho et al. 2008], and ghost designed for material perception studies [Havran et al. 2016], Figure 8. The results of the experiment can be appreciated in Figure 10, right.

For the bunny geometry, we see no significant degradation of performance (p < 0.001). In contrast, the performance for the ghost is lower while still being positive and statistically significant (p < 0.001). We attribute this to the challenging nature of the geometry, which features many inter-reflections and self-shadowed regions. A small decrease of performance was also expected given the slight influence of surface texture on the perception of glossiness [Baar et al. 2016]. Even in such a challenging scenario, our correction was mostly preferred and, at worse, performed on par with respect to the reference. However, we expect the performance to improve on any geometry when the method uses the target geometry during optimization, as we have shown in our cars validation tests (Figure 10, right).

5.4 Ablation Study on Illumination
The original illumination used during our optimization followed guidelines that suggested using a scene with complex natural illumination to mimic normal viewing conditions. To stress-test our method, we evaluate using a complimentary environment map that captures a tunnel with very strong, focused, and sparse area lights (Figure 8). We proceeded to replicate these in our lab conditions by lowering the blinds and turning on our fluorescent lamps. We then tested both proposed compensations (which were computed under these two different environment maps) under loosely matching (i.e., museum with a mix of natural and point-light artificial lights) and non-matching environmental lighting conditions (i.e., museum with solely artificial fluorescent tubes). The results of our method are shown in Figure 10.

We can observe a mild degradation of performance with respect to our validation study. The correction still achieved significant improvement in color and once again never performed worse than the baseline (p < 0.001 for both matching and non-matching conditions). We believe that our correction is quite robust and should handle various natural environments well while naturally being slightly illumination-dependent.

5.5 Application to 3D Printing
Lastly, we present an application of our correction in the context of 3D printing. 3D printers require supporting structures to produce overhangs. These support structures often affect the finish of the print. As such, a simple sphere printed in a glossy finish will be manufactured with a half-glossy and half-matte finish. While such a variance in gloss might be acceptable for rapid prototyping, the resulting variance in perceived color would require manual post-processing samples for a consistent finish. We demonstrate that our correction can help to maintain color consistency. We manufactured 5 spheres with half matte and half glossy finish. For the reference spheres, we used the same color on both halves. For the corrected spheres, we applied our correction on the glossy side. We then asked the participants which of the spheres was perceived as more uniform.

The participants in each scenario considered the color-compensated spheres as more uniform (Figure 7, p<0.001). We showcase an example of this application in Figure 1 where our compensated half has an actual color difference of 4.047ΔE00 with respect to the original half. In the same vein, if spatially-varying gloss is desired [Piovarči et al. 2020], we can ensure that color will be consistent with the digital design, regardless of the surface finish.

6 LIMITATIONS AND FUTURE WORK
The method presented here computes a reference perceived color based on several assumptions. While we show that the final method works well and is reasonably robust, a more in-depth evaluation of the individual factors merits further study.

Our method estimates the mean perceived color from a single view. We did not evaluate how viewpoint selection impacts the correction. However, there are parallels between viewpoint selection and illumination changes as both change the distribution of colors on the surface of the reference geometry. Therefore, the performance of our correction from different view locations should loosely follow our evaluation using different environment maps.

For the estimation of the reference color, we use a neutral car geometry commonly used in the automotive industry. Our ablation studies suggest the method generalizes well to other geometries. However, a notable exception to this would be geometries with strong view-dependent effects. The simplest example is a flat plane where the visibility of the specular reflection strongly depends on the viewing direction. An interesting direction of future work would be to investigate if observers can compensate for these strong view-dependent effects.

Our method currently needs to be re-computed for specific color-gloss pairs and geometries. However, our ablation studies suggest the method generalizes well to other geometries, potentially enabling a more widespread application of our method by precomputing large numbers of color-gloss corrections and deploying them as LUTs during print time.

During our optimization, we disregard the gamut of the output device when computing the correction. This can lead to generating corrections that lie outside of the gamut of the output device. In our studies, it is most visible when compensating towards a glossier finish which generally increases saturation. An interesting direction of future work would be to integrate the gamut of the output device as a constraint in the optimization.

Lastly, we use grayscale environment maps to illuminate our geometry. We chose a grayscale illuminant based on color constancy [Arend and Reeves 1986]. Our results suggest that the effect of different illuminations is small. However, further investigation whether the coupled color-gloss perception follows the same color constancy rules would be needed.
7 CONCLUSIONS

We present a perceptually-driven, differentiable rendering-based color correction approach that maintains a consistent perceived color on a surface regardless of the gloss level. To this end, we conduct a novel psychophysical experiment, demonstrating that the HVS estimates perceived color for a complex object under complex illumination by integrating specific locations that are more saturated and stable under view-dependent effects. Based on this insight we design a novel color correction method that models how subjects aggregate color from surfaces given varying gloss levels, estimating and correcting the perceived color shift. We show that our correction outperforms the state-of-the-art, and demonstrate the first practical application of such correction to color 3D printing.

ACKNOWLEDGMENTS

We thank Matthew S Zarawski for the 3D model of the car speed shape, Creative Tools3 and Stanford Computer Graphics Laboratory for the geometry of the bunny, and Havran et al. [2016] for the geometry of the ghost. This research has been supported by the Swiss National Science Foundation (SNSF, Grant 200502), the FWF Lise Meitner (Grant M 3319), and an academic gift from Meta.

REFERENCES

3https://www.thingiverse.com/creativetools/designs

Fig. 9. A small showcase of the color triads presented to test subjects during our experiment in different viewing angles and varnishes (top-left and bottom, Schmincke Matte, top-right, Edding Clear Matte). Target denotes the target color appearance, while baseline is the same base color on the target surface finish. Ours achieves a closer perceived color to the target, while maintaining the desired glossy surface appearance. Note that due to compression and SDR screen quality, color differences may look substantially smaller than in real life.

Fig. 7. Results for our experiment with spatially varying gloss, broken down for individual color pairs. On average, we achieve an 82.22% of preference for our compensations, meaning that our compensated spheres had better color uniformity across different surface finishes.

Fig. 8. Showcase of the different geometries and real captured environment maps used throughout our ablation studies.
Fig. 10. Results for our experiment with 3D printed samples. In the top row, we show averages across different colors for validation and ablation studies. In the bottom row, we show corresponding plots for its top counterparts, which break down averages into all individual tested colors, each the average response of the 18 test subjects. On the left, we have the validation study, while on the right we have our two ablations: on geometry (varying geometries while keeping compensation computation with cars geometry (centre)) and on environment illumination (using different environment maps during computation and testing the different proposed compensated colors within a loosely matching illumination or a largely different one (right)). A 50% preference (marked by the black line) means that while we don’t improve over the baseline color, our proposed compensation does not worsen perceived color. As you can see, our method routinely achieves to reduce the perceived gap between different finishes.