Eurographics Symposium on Rendering (2025)
B. Wang and A. Wilkie (Editors)

Temporal Brightness Management for Immersive Content

Luca Surace!

, Jorge Condor! , Piotr Didyk1

IUniversita della Svizzera italiana, Switzerland

— ours

original
baseline

JEE

brightness

time (frames)

Figure 1: Our method adjusts the screen brightness based on the content of each frame. In the outdoor scene on the left, characterized by
high brightness, our technique darkens the frame to a greater extent compared to a constant reduction (baseline) without significant losses
in the visibility of image details. Conversely, in the darker indoor space shown on the right, where dimming the screen can easily lead to loss
of visible image details, our technique increases the brightness to better preserve contrast. Throughout the entire sequence, our technique

utilizes the same power budget as the baseline.

Abstract

Modern virtual reality headsets demand significant computational resources to render high-resolution content in real-time.
Therefore, prioritizing power efficiency becomes crucial, particularly for portable versions reliant on batteries. A significant
portion of the energy consumed by these systems is attributed to their displays. Dimming the screen can save a considerable
amount of energy; however, it may also result in a loss of visible details and contrast in the displayed content. While contrast
may be partially restored by applying post-processing contrast enhancement steps, our work is orthogonal to these approaches,
and focuses on optimal temporal modulation of screen brightness. We propose a technique that modulates brightness over
time while minimizing the potential loss of visible details and avoiding noticeable temporal instability. Given a predetermined
power budget and a video sequence, we achieve this by measuring contrast loss through band decomposition of the luminance
image and optimizing the brightness level of each frame offline to ensure uniform temporal contrast loss. We evaluate our
method through a series of subjective experiments and an ablation study, on a variety of content. We showcase its power-saving
capabilities in practice using a built-in hardware proxy. Finally, we present an online version of our approach which further
emphasizes the potential for low level vision models to be leveraged in power saving settings to preserve content quality.

CCS Concepts
e Computing methodologies — Perception; Virtual reality;

1. Introduction

Power consumption is a fundamental axis of hardware design, par-
ticularly in edge and portable devices. Battery life and computa-
tional power form a careful balance, and efficient use of power re-
sources can directly contribute to increased computational power
budget for more realistic and interactive applications.

In virtual reality (VR) devices, dimming the screen is a common
approach to energy preservation, but it encompasses a trade-off
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between power consumption and image quality. Recent work has
highlighted this problem [CWM®*24], comparing various power-
saving techniques and their respective impacts on perceived qual-
ity. Their analysis shows that, on OLED architectures with a 30%
power-saving target, uniform dimming ranks as the second-best, in
terms of perceptual impact measured by Just-Objectionable Differ-
ences (JOD). Furthermore, when the power-saving target exceeds
60%, uniform dimming becomes the most effective approach for
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maintaining visual quality. For more common Liquid Crystal Dis-
plays (LCDs), uniform dimming is the only method capable of re-
ducing power consumption by 50% without incurring a significant
perceptual quality loss. Therefore, refining global dimming tech-
niques is a promising avenue for advancing power-efficient display
designs across various architectures. However, substantial correc-
tions to brightness levels risk reducing content visibility and lumi-
nance contrast.

Previous works address this problem with frame-dependent
brightness scaling techniques, evaluated using standard image qual-
ity metrics [PDP*19]. Additionally, user studies have assessed the
acceptability of brightness degradation [PS15]. Integrating post-
processing steps with power-saving measures, including contrast
enhancement [PMP18] and luminance retargeting [WM14] is a rel-
atively simple approach to partly mitigate the degradation in qual-
ity. Unlike previous techniques, however, our method explicitly
models luminance adaptation, resulting in imperceptible brightness
modulations within VR environments.

In this paper, we present a novel technique for dynamically ad-
justing screen brightness to reduce display power consumption.
Our method is formulated as an optimization problem based on a
low-level human vision model that accounts for perceived lumi-
nance contrast. The optimization process aims to achieve a balance
among three objectives. First, it aims to maintain power consump-
tion at a specified input level. Second, it seeks to ensure consistent
luminance contrast loss throughout the entire sequence. Finally,
it guarantees that any variations in brightness over time are not
perceived as artifacts, such as visible flickering. Here, we specif-
ically design our methods for virtual reality displays, which allows
us to leverage the fact that users immersed in a virtual environ-
ment without access to real-world stimuli exhibit low sensitivity to
global luminance changes. We thoroughly validate our technique
through subjective human experiments and measure its power sav-
ings on actual hardware. We demonstrate that our method not only
improves perceived quality compared to a baseline solution which
reduces the brightness uniformly over the sequence duration, but
can also lead to improved task performance. Apart from the offline
optimization, we also propose a simple online solution which real-
izes the same goals.

2. Related work

Power reduction strategies vary depending on display technology.
LCDs depend on a backlight filtered by a color matrix, making
backlight dimming the main method for reducing power consump-
tion. Conversely, OLED panels are self-emissive, allowing more
precise control since the intensity and color of each pixel impact
overall power use. Irrespective of the technology, reducing power
can result in a perceived loss of image quality. Advanced tech-
niques aim to balance power efficiency with image quality. Re-
cently, Chen et al. [CWM#*24] established a standard framework
for quantifying the perceptual impacts and power savings of differ-
ent solutions, which highlights global dimming as one of the most
promising avenues for imperceptible power use reduction.

Display dimming The most dominant method for reducing
power consumption is display dimming [CP04; CSC02; GABR02;

CWM#*24; PS15]. In addition to various models of power consump-
tion and dimming strategies, some approaches focused on explicitly
addressing the trade-off between power consumption and quality
loss by using simple quality metrics like PSNR or SSIM as con-
straints [Kan15a; Kan15b; CXS16]. More advanced methods inte-
grate quality metrics as objectives within optimization processes.
For instance, Pagliari et al. [PDP*19] employed a simplified SSIM
metric in an optimization framework that determines the appropri-
ate brightness for each displayed frame. In the context of immersive
wide-field-of-view display, it is possible to apply brightness mod-
ulation in the periphery, where it is less noticeable [KL.20]. These
simple metrics, however, are not capable of capturing the full com-
plexity of the human visual system (HVS) and can lead to temporal
artifacts or smaller potential power savings [PDP*19].

Color modulation In non-quantum dot self-emissive displays,
like OLED panels, it is possible to enhance power efficiency by
remapping pixel colors based on the efficiencies of primary col-
ors. In certain cases, changing the color scheme or profile can be a
viable method to save energy [DZ11b; DZ11a]. However, when it
comes to natural content, remapping colors may produce undesir-
able effects. It has been demonstrated that this strategy can still be
effectively applied in wide-field-of-view displays by taking advan-
tage of the limitations of the HVS in peripheral vision and modu-
lating colors only in those regions [DCT*22].

Compensation methods Dimming the display can significantly
impact the quality of image details, color, and depth perception.
A number of techniques have been dedicated to compensate for
such undesired changes. An example of a simple compensation
strategy is an increase in image brightness prior to display, which
preserves the visibility of image details in dark image regions but
introduces clipping to bright regions. Kerofsky and Dally [KDO06]
proposed to counteract this effect by smoothly attenuating bright
image values to preserve bright image details. Such an approach
is similar to other methods that apply global contrast adjustment to
correct for the lost details [CSC02; CP04; CKK13]. The loss of spa-
tial details can be more effectively addressed by local contrast en-
hancement methods. Such methods have been extensively studied
in the context of tone mapping, with examples such as, [MDKOS;
KMSO07; EMU16]. They usually rely on accurate modeling of lu-
minance perception and frameworks for local contrast processing.
In the context of power-efficient displays, existing works proposed
retargeting methods for matching image appearance between dark
and bright conditions [WM14; AMMW?22]. It is important to note
that while the visibility of image details is the primary visual cue
affected by reduced brightness, others that rely on luminance pat-
terns can also be inhibited. An example of such a cue is stere-
opsis [DRE*12]. The problem was investigated in [WZMM?22],
where the authors proposed a method for compensating side effects
of reduced luminance conditions on depth perception. Another is-
sue related to brightness modulation can be temporal coherence.
Rapid changes in luminance can lead to flickering artifacts, while
slower modulation rates may result in brightness incoherence over
time. Closest to our method are the techniques that focus on pre-
serving temporal brightness coherency in the context of tone map-
ping [BBC*12; BCTB14]. It is important to note that any post-
processing effort to recover lost contrast is orthogonal to our work,
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Figure 2: Pipeline of our method. The conversion to luminance is achieved using the luminance curve of the display and applying the display
model from Mantiuk et al. (Equation 1). The self-parameters for masking remain consistent with the original model proposed by Zeng et al.
[ZDL00]: o. = 0.7 and B = 0.2. The output value C, represents the visible contrast in the frame.

and could be integrated into our optimization procedure to further
reduce power consumption.

Discussion The method presented in this paper aims to enhance
power efficiency through display dimming, aligning with existing
methods in this category. However, there are significant differences
between our approach and previous techniques. First, our method
explicitly models luminance adaptation, which is crucial for under-
standing the reduction in perceived contrast due to decreased im-
age brightness. Second, we rely on a precise perceptual model of
perceived luminance contrast, in contrast to some general-purpose
quality metrics that do not provide accurate information about visi-
bility of luminance contrast. Finally, our method focuses on bright-
ness modulation that remains imperceptible to users. While many
previous techniques were designed for general screens, such as cell
phones, our approach specifically targets VR devices. This allows
us to leverage the fact that, while immersed in a virtual environment
without access to real-world stimuli, users exhibit very low sensi-
tivity to gradual brightness changes. Through careful calibration of
our method, we ensure that the brightness modulation remains im-
perceptible.

3. Method

When reducing the screen brightness, the visibility of luminance
contrast in the image changes. The effect can be directly attributed
to the reduction of the sensitivity of the HVS to luminance con-
trast when adaptation luminance decreases [WM14]. Consequently,
screen dimming may result in a loss of visible luminance contrast,
leading to poorer visibility of image details. Our goal is to achieve a
specific average power budget for the display by intelligently dim-
ming the screen based on the content being shown, preserving vis-
ible contrast. Since such temporal brightness modulation may lead
to visible temporal artifacts, we constrain the modulation rate to re-
main smooth. Our method quantifies the loss of visible contrast by
analyzing perceived luminance contrast modeled using multi-band
frequency decomposition (Section 3.1). In addition to quantifying
the magnitude of contrast loss, our method also identifies the por-
tions of the image where details become invisible due to the bright-
ness reduction (Section 3.2). An overview of this pipeline is shown
in Figure 2. We use this per-frame prediction to optimize the bright-
ness modulation for an entire video sequence offline (Section 3.3).

3.1. Perceived Contrast

In order to locally measure where contrast is perceivable by a hu-
man observer, and quantify its magnitude per frame, we adapt Tur-
sun et al. [TAW*19] approach. We analyze the contrast in a frame,
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as defined by Michelson et al. [Mic95], using a frequency band
decomposition of the luminance image. We first convert image in-
tensity to luminance using Mantiuk et al. [MDKO0S] display model:

L(p) = (L") (Lmax — Lptack) + Lptack + Lyesi, 1

where L is the displayed luminance, L’ is the pixel value at loca-
tion p, and vy is the display gamma. L. denotes the peak display
luminance, while Ly, is the display’s black level. The term Ly, s
refers to ambient light reflected from the display surface. Next, we
compute the Laplacian pyramid decomposition [BE83] of the lu-
minance image, obtaining the band-limited luminance difference,
AL(f, p), at given frequencies f and image locations p. To compute
perceived contrast, we normalize the pyramid by the average lumi-
nance in the area Lq(f, p), which is provided by the corresponding
point in the Gaussian pyramid two levels down the resolution. Fi-
nally, contrast is normalized by the Contrast Sensitivity Function
(CSF) [Bar03]. The final perceived contrast value can be then com-
puted as:

Cr) = Bl Sesr(F Ll @)

where the additional € denotes a small value that prevents singular-
ities in dark image regions. To incorporate the effect of the visual
masking, we apply the transducer model of Zeng et al. [ZDL00]
with their proposed default parameters and obtain the final per-
ceived luminance contrast as

sign(C(f,p)) - 1C(f,p)*”
C f7 = b
t( p) I+ %quN(p) |C(f7Q)|02

where N(p) denotes a 5 x 5 neighborhood in the same band. Differ-
ently from the work of Tursun et al. [TAW*19], we do not model
retinal eccentricity, relying on a simpler model for the CSF, since
we target common global-backlit panels. This may be of interest,
however, in gaze-contingent scenarios using self-emitting displays
like OLED or QD-LED, and panels with local area dimming.

(3)

3.2. Contrast Loss

We use the perceived luminance contrast measure to compute con-
trast loss due to screen dimming. To do so, we compare per-
ceived contrast pyramids of the reference luminance image / and
its dimmed version D = b - I, where b is a dimming factor. We ob-
tain the portion of the contrast pyramids containing visible contrast
using

ZZH(C[(f,?)>1)7 @
7P
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where summation over f iterates over pyramid levels, discarding
the coarsest level containing the average value of the image; while
the summation over p iterates over all pixels in the level. Addition-
ally, N; denotes the number of levels, N‘,§ is the number of pixels
in the layer corresponding to frequency f, and I is the indicator
function which returns 1 if the condition given as the argument is
true, and O otherwise. Since we normalize by the CSF, we set the
threshold value within the argument to 1, as it corresponds to the
smallest contrast level that the HVS can reliably perceive, serving
as a lower limit for visibility under ideal conditions. Figure 3 il-
lustrates the effect of I on one contrast pyramid level. Finally, we
compute the value of Equation 4 both for the reference images as
Cﬂ and for the dimmed version C? and define the contrast lost due
to the dimming / by a factor b as
o

Le(Ib)=1— o

where D=0b-1. )

3.3. Optimization

Our optimization, based on the idea that spatial contrast affects the
perceived quality of image details, as supported by previous work
in tone mapping [MMS06], is designed with three goals:

e quantify the spatial contrast loss and reduce its impact, to ensure
a consistent visual experience during playback;

e optimizing power consumption, by ensuring that a predeter-
mined power budget is maintained;

e mitigate temporal artifacts, by limiting the maximum brightness
variation rate tolerated by the human visual system, as deter-
mined through the perceptual experiment (Section 3.4).

However, there is a trade-off between these goals, as it is not pos-
sible to satisfy all of them simultaneously, e.g. achieving both a
perfectly flat contrast loss and the desired power consumption. In
our case, we formulate the model to prioritize meeting a target av-
erage power budget on a specific display, treating it as a hard con-
straint. This constraint effectively determines the total contrast loss.
By fixing the power budget, the task becomes how to best distribute
contrast loss across the sequence. Therefore, our objective function
focuses on minimizing variations in contrast loss throughout the
sequence.

The input to the optimization is a video sequence represented by
a set of N luminance images {/;} and a target power budget Ppse-
The goal of the optimization is to find a set of per-frame brightness
reduction factors {b;}, fulfilling our design goals outlined above.
More formally, we define the following optimization as:

N N
Z Z ’L‘,c(],‘,bi) — »Cc'([,i7b.i)|

minimize
{bi} =1 j=it1
. dLg (Iivbi)
bjectto ————= < AL(b;
subject to i (bi) ©)
N
Pi
~N Pbase:
=N
V0<,‘§N 0<bi<1,
dLq(I,b) L .
where == denotes the derivative of the average luminance of

each frame and AL is the maximum undetectable rate of luminance

Figure 3: Visible contrast (white) at the highest frequency level
of the band decomposition after binary thresholding, and regions
where contrast loss occurs between the dimmed frame and the orig-
inal frame (red), for target average brightness levels of 0.4 (top)
and 0.8 (middle). The original frame is displayed at the bottom
of the image. The lower the backlight brightness, the higher the
amount of detail lost.

change, which we derive in Section 3.4. Finally, P; is the power
consumption required for the display to show the frame /; with the
dimming factor b;, and it is dependent on the specific display.

3.4. Brightness modulation rate calibration

We find the maximum rate AL at which brightness is modu-
lated according to human perception. We evaluate human sensi-
tivity to global luminance changes by conducting a subjective two-
alternative forced choice (2AFC) experiment. We then use the re-
sulting data to ensure that our modulation does not lead to exces-
sively steep transitions, minimizing the risk of producing visible
artifacts. Each specific display requires its own calibration.

In the experiment, 10 participants were presented with a white
screen of constant brightness, which was linearly decreased over a
five-second interval, which we assumed to be a representative time
for reliable adaptation in most display usage conditions [WMP19].
This was followed by an additional second of constant brightness.
Initial brightness varied

from a predefined set of N
brightness factors B = @25
{0.2,0.4,0.6,0.8,1.0}. §20 L
Additionally, different g 15

slopes were tested for EI-O

each value. Participants 205

were instructed to indicate 0.0

0 20 40 60 80 100

whether they perceived luminance (cd / m?)

a change in brightness
by responding with ei-
ther "yes" or "no". The
threshold for detecting
brightness changes was
determined as the value
corresponding to a 75%
detection rate for each
factor, calculated by fitting
a logistic function to the answers. After determining the thresholds,
we measured the displayed luminance corresponding to the initial
and final brightness levels with a luminance meter. We repeated the
procedure using a gray level to cover the relevant luminance range.

Figure 4: Correlation between
luminance and the slope AL at the
visibility threshold (probability of
75% of detecting the change).
The curve is a fourth-degree poly-
nomial fitted to the data points.
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Figure 5: We apply our method to a sequence of checkerboard pat-
terns (top, input frames), where the white squares gradually transi-
tion to black through various shades of grey. Our method compen-
sates for the increasing loss of visible contrast by enhancing the
brightness accordingly.

In Figure 4 we show the curve obtained from the experimental
data.

3.5. Implementation

‘We minimize the objective function in Eq. 6 using the Sequential
Least-Squares method [CMKS83]. Additionally, we parameterize
our display model (Equation 1) setting ambient light reflected from
the display surface to zero, which is a fair assumption on VR setups.
We initialize the optimization process with a sequence of constant
brightness factors corresponding to the desired target power reduc-
tion, perturbed by a small random deviation, . Since L (1;,b;) is
repeatedly evaluated, for each image /;, we precomputed the term
for a set of brightness factors {0.2,0.4,0.6,0.8,1.0} and linearly
interpolate between the obtained values during the optimization for
efficiency reasons. We ran all our optimizations until convergence
with a tolerance value of 1073, An optimization of 3000 frames
takes around three minutes single-threaded on CPU (Intel Core i7-
9700K @ 3.60GHz).

4. Results

We test our method with different video sequences exhibiting a va-
riety of scenery, both synthetic (Figures 1, 7) and real (Figure 6).

We visually showcase our algorithm in Figure 5, applied to
checkerboard patterns. Initially, the tiles are black and white, max-
imizing contrast, which allows the brightness factor to remain low.
As the white tiles slowly approach black, the algorithm compen-
sates for the loss of contrast by increasing the brightness factor. In a
second, more realistic scenario, we run our optimization on a time-
lapse video sequence of a sunrise (Figure 6). The video is reversed
at half of its duration. During the darker intervals, when the sun
is not visible, brightness is high. Conversely, brightness decreases
when the sun rises above the horizon.

In order to validate our approach, we ran an extensive set of ex-
periments on human subjects to measure the impact of our mod-
ulation on perceived quality and contrast. For all our perceptual
experiments, we used a Varjo XR-3 headset. We include details on
its hardware capabilities on Supplementary materials.

© 2025 The Author(s).
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Figure 6: Time-lapse sequence capturing the Sun’s movement (top,
input frames). Our technique optimizes power allocation by spend-
ing more of the "brightness budget" during the initial and final
parts of the video, where the frames are darker. At the same time,
during the middle section, the dimming can be more aggressive.

Stimuli We created four different camera paths (LIBRARY,
SCHOOL, LIVING ROOM, BASEMENT) from two high-quality 3D
environments containing a variety of indoor, outdoor and differ-
ently illuminated spaces (Figure 7). We generated four video se-
quences from these paths, each targeting a different average bright-
ness factor: 30%, 40%, 50%, and 70% of the maximum bright-
ness. We selected different brightness factors on different scenes
to showcase flexibility of the method while keeping the length of
our perceptual experiments in check. We include additional mod-
ulation curves targeting different power consumption in the sup-
plementary material. We compute with our method (Figure 2) the
optimal brightness modulation (referred to as brightness factor) for
the four sequences. For comparison, we render a BASELINE alter-
native, which simply applies constant dimming to achieve the same
target power consumption.

4.1. Detail Preservation

The first experiment aimed to assess the quality of perceived de-
tails in different environments. In theory, with our modulation, de-
tail visibility should be preserved when brightness is reduced, as
opposed to substantial contrast loss when constant-dimming.

Study A total of 17 people naive to the study with normal vision
participated in the experiment (ages 23-31). For each of the four
video described above, the two alternatives OURS and BASELINE
are shown in a randomized order from one subject to the next. The
task of the participants was to give a score 1-5 to rate the quality
and saliency of the details found in the scene for each alternative,
where 1 indicates low quality and 5 indicates high quality.

Results Table 1 presents the results obtained for all four se-
quences. Our method consistently outperformed the baseline, re-
ceiving higher ratings for perceived detail quality in both scenarios.

4.2. Contrast Preservation through a Performance
Experiment

In order to quantitatively measure the preservation of contrast pro-
vided by our approach in the previous sequences, we designed
a task performance experiment based on finding various Landolt
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Figure 7: Brightness and loss of contrast plots for the four sequences LIBRARY, GYM, LIVING ROOM and BASEMENT. The sequences target
an average power consumption as a fraction of the maximum screen power (0.5 in LIBRARY, 0.4 in GYM, 0.7 in LIVING ROOM and 0.3 in
BASEMENT, with 0 being absolute black and 1 the original image without dimming). For each sequence, we annotate labels describing the
lighting conditions to provide insight into the algorithm’s behavior. As an example, in the LIBRARY sequence, the brightness initially starts
at a low level and gradually increases when entering indoor spaces with dimmer lighting. Subsequently, the camera navigates through a
corridor with moderate illumination before reaching the dark library shelves. Although the modulation rate appears quite steep, it remains
within the limit imposed by the calibration (Section 3.4). Vertical colored lines indicate the timestamps of some example frames shown below.

rings [CC*88] (in the SCHOOL and HOUSE scenes). We select spe-
cific keypoints in these sequences, locating the user in these po-
sitions, and maintain the predicted brightness modulation from the
previous experiment. The objective is to quantitatively measure (via
detection time) if our brightness modulation technique enhances
the visibility of environmental details compared to the baseline
method. We include extensive details on the stimuli and study in
the Supplemental.

Results Figure 8 presents the average detection times for each lo-
cation, along with the standard error of the mean. We can observe
that detection times were significantly reduced in low-brightness
environments. Furthermore, in bright areas, our modulation did not
significantly impact detection time, while saving energy with re-
spect to the baseline via reduced brightness. In rare cases (e.g. Cor-
ridor), however, our method reduces brightness too aggressively to
maintain effective contrast. Although our algorithm achieves con-
sistent contrast losses, it operates globally, which may lead to spe-
cific features being compromised, such as the Landolt in this case.
This is further discussed in Section 7.

4.3. Imperceptible Brightness Modulation

We also verify that our adjustments in brightness are subtle or
imperceptible. While our method primarily focuses on preserving
spatial contrast, ensuring temporal coherence is important to pre-
vent artifacts resulting from excessively steep brightness modula-
tion rates. The stimuli utilized in this subjective experiment were
identical to those described in Section 4.1.

Study The same 17 participants who took part in the detail preser-
vation experiment also participated in this study. Their task was
to identify, using a 2AFC protocol, the stimulus that they believed
showed a change in brightness. The two alternatives were OURS
(modulated) and BASELINE (constant dimming) for each sequence
examined. Before the experiment, participants were shown an ex-
ample of a brightness change on the VR headset and they were
informed that modulation was only present in one of the two alter-
natives.

Results The probability of selecting our method was reported to be
nearly 50% for all sequences (Table 1, last column), indicating no
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Figure 8: Results of the performance experiment (Section 4.2). For
each location in the four sequences, we report the average detec-
tion time. The white numbers indicate trials where the ring was un-
detected, and the number above each column shows the modulated
brightness used. The baseline brightness, in brackets, is constant
across all locations in each sequence.

Table 1: Results of both the detail quality experiment and the
brightness modulation rate experiment (Sections 4.1 and 4.3, re-
spectively). The first two columns show the comparison of qual-
ity ratings for perceived details between OURS and the BASELINE,
along with standard error of the mean. Higher values indicate bet-
ter perceived details. The last columns is the probability of detect-
ing brightness changes in the sequence where our algorithm, mod-
ulating the brightness, is applied. A result of 0.5 indicates imper-
ceptible modulation.

Sequence Baseline Ours || % artifacts det.
Library 3.594+40.22 3.764+0.16 53%
Gym 3.234+0.26 3.714+0.19 47%
Livingroom 3.82+0.19 4.18+0.17 47%
Basement 3.474+0.15 4.2940.18 53%

substantial perceptual difference between OURS and the BASELINE.
This suggests that our method achieves a brightness modulation
rate that is imperceptible.

4.4. Ablation on Visual Adaptation

By modeling the temporal behavior of photoreceptors, simulat-
ing luminance adaptation, we verify that our modulation aligns
with the continuous adaptation process of the human visual sys-
tem. Using Pattanaik’s method [PTYGO00], we model both the fast,
symmetric neural adaptation effects and the slower, asymmetric
effects resulting from pigment bleaching, regeneration, and satu-
ration. We compute the static response [Hun05], which assumes
viewers have achieved a steady-state of adaptation, and the dy-
namic time-varying response, that eventually reaches the same state
given enough time, indicating full luminance adaptation. For our
analysis, we focus exclusively on cones, which are primarily re-
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Table 2: For each sequence, we report the average difference be-
tween the static and dynamic cone responses with (constrained)
and without (unconstrained) the temporal change limit AL deter-
mined in our calibration experiment (Section 3.4). Results confirm
that the constrained modulations closely align with the adaptation
of the HVS. In the LIVING ROOM sequence, the two differences are
very similar to each other, indicating that when the reduction factor
is not severe (70% of brightness), our method effectively handles
adaptation even in an unconstrained fashion.

Sequence Brightness factor Constr. Unconstr.
Living room 0.7 0.6055 0.6151
Library 0.5 0.4189 0.7311
Gym 0.4 0.4537 0.6286
Basement 0.3 0.3368 1.4984
constrained unconstrained
130 Library Gym 500 Basement
160 250
140 500
120 400 200
100
150
30 300
60 200 100
40 100 50
20
O0.0 1.0 20 3.0 00.0 1.0 2.0 3.0 00.0 20 40 6.0
le-3 le-3 le-3

Figure 9: Histogram of the differences between static and dynamic
cone responses. Under constrained conditions, the majority of dif-
ferences are minimal, whereas the unconstrained approach results
in larger discrepancies. This demonstrates that our calibration is
crucial for maintaining effective visual adaptation throughout the
sequences.

sponsible for visual perception when viewing displays under typ-
ical daylight conditions. We integrate the values of the cone re-
sponses over time and report the results in Table 2. Furthermore,
we show the histogram of differences between static and dynamic
cone responses in Figure 9.

As we can see, in the tested sequences, the two responses closely
align with each other when applying our modulation rate constraint.
In contrast, optimizing without this constraint results in a larger
divergence between the two responses. This demonstrates that our
calibration helps maintaining a continuous visual adaptation of the
human eye while watching the displayed content.

5. Measuring Real-life Power Savings

Isolating the power consumption of individual elements in a real
VR setup can prove difficult without direct access to the hardware.
In order to realistically assess the potential power savings of our
approach, and in a similar fashion to closely related works [CP04;
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DCT*22], we crafted a representative setup consisting of an off-
the-shelf LCD panel (see Supplemental for the technical sheet),
a custom screen driver and a power measuring circuit. A detailed
schematic can be seen in the Supplemental. To characterize the en-
ergy consumption of the display, we measured power consumption
at different brightness levels and fit the measurements to establish
the relationship between luminance and power consumption, re-
sulting in the following model:

P(L) = 0.001858L +0.2945 7

where L is the luminance value; a linear correlation between
backlight brightness and power consumption is typical in global-
backlight LCD displays. Thanks to the linear correlation, bright-
ness plots throughout our paper can also provide sufficient infor-
mation on instantaneous power consumption (e.g. Figure 7). This
function is then used to compute power consumption per frame, P;,
in our optimization (Equation 6).

In Table 3, we report measured average screen power consump-
tion throughout Section 4.1’s experiment. We also report average
power consumption when running the sequences without dimming
the display (full brightness). Our approach achieves the desired
power consumption target while substantially improving perceived
quality, as demonstrated before.

Table 3: Average screen power consumption throughout the du-
ration of the sequences running on our setup. As imposed by the
optimization, OURS and BASELINE consume the same amount of
power.

Sequence Baseline Ours Full brightness
Library 0959W 0975W 1.800 W
Gym 0.800 W  0.793 W 1.797 W
Livingroom 1.258W 1259 W 1.789 W
Basement 0.646 W 0.644 W 1.789 W

6. Extension to Real-Time rendering

While optimal perceived-quality-aware brightness modulation re-
quires knowledge over future content to be displayed, we can still
leverage our contrast-luminance sensitivity model to diminish the
perceived impact on quality loss when attempting to reduce screen
power consumption. Inspired by classic control theory, we devel-
oped an alternative formulation of our algorithm that dynamically
adjusts screen brightness based on a user-defined maximum tolera-
ble contrast loss. We implemented a proof of concept on GPU with
HLSL and Compute Shaders in Unity, which runs real-time.

Method motivation A key insight from our approach in Section 3
is that it can be seen as closed-loop negative feedback system,
where measured difference of contrast losses between subsequent
frames influences the brightness of the following frame, attempting
to rectify deviations. This conception of the system allows us to
leverage classic control theory methods to design optimal real-time
brightness modulation. In particular, we deploy a Proportional-
Integral-Derivative (PID) controller (Figure 10) in conjunction with

L. Surace, J. Condor, P. Didyk / Temporal Brightness Management for Immersive Content

Graphics Pipeline l

lCurrent Frame HDisplay Driver}—*

Figure 10: Block diagram of our PID-based control scheme. c(t)
is the user-defined reference contrast loss, which could be fixed or
changed over time. The controller’s duty is to achieve this contrast
loss by minimizing the error e(t) between the current contrast loss
¢y(t) and the desired one. The resulting action from our controller
(brightness, b(t)) is directly applied to the display driver and is
used as well to predict the contrast loss induced by the current dis-
played frame using the model introduced in Section 3.2. We empir-
ically found KCp = 0.2, K; = 0.01, Kz = 0.05 to work well for a
variety of content.

our previously introduced perceived luminance-contrast sensitivity
model, managing average contrast loss near desired values. While
directly controlling power consumption would be more desirable,
this is unfeasible within our framework in an online/real-time envi-
ronment, where how the player interacts with the content is outside
of our control. In practice, our model saves energy (on average)
while maintaining consistent quality; a straightforward alternative
(i.e. constant dimming of the screen) attempting to obtain similar
energy savings results in degraded quality depending on displayed
content (which we specifically test in the Results section below).

Implementation details Each rendered frame is first processed
with the same pipeline described in Section 3. The algorithm com-
putes the band decomposition and from it the loss of visible contrast
with respect to the previous frame. The controller operates with
a predefined target contrast loss, adjusting brightness to achieve
this target. A higher target contrast loss generally enables more
aggressive dimming. With regards to the controller, we can see
an overview in Figure 10. The PID’s constants Kp, KC;, Ky were
empirically determined across varied content to ensure stability
and quick reaction time while avoiding large, sudden brightness
changes. Broadly, the proportional component Cp, regulates the re-
action time of the system to changes in the state: larger values will
typically allow it to quickly rectify deviations in the target con-
trast loss; but too large and it can produce significant overshoots,
temporal artifacts and even slower response times. The derivative
component g on the other hand, regulates the instantaneous mod-
ulation rate and allows us to constrain it in a similar fashion to
our temporal calibration in Section 3.4. The integral component /C;
smooths the response ensuring that on average we reach our quality
target. We include the values we employed throughout our exper-
iments in Figure 10, and speculate about optimal control schemes
in Section 7.

Results To verify that visible contrast is preserved, we run a game
session of about three minutes in our environment HOUSE while
using our online approach. We computed average brightness and
compared it to a baseline method that applies a constant dimming

© 2025 The Author(s).
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factor. Targeting a contrast loss of 0.25, our modulation results in
an average brightness factor » = 0.52 and a measured average con-
trast loss of £ = 0.255+0.119. The baseline, constantly dimmed
with b = 0.52, exhibits £, = 0.259 & 0.182. Therefore, our control
scheme yields slightly lower contrast loss and maintains it more
stable throughout the session, improving perceived quality.

We also study the im-

pact in practical power sav- & 0.60
ings of different contrast loss 3 8-23 Basement
targets. We run the BASE- 2 045
MENT sequence with our real- £ 0.40
time approach setting increas- 2035
ingly higher contrast loss tol- = 0.30

0.0 0.1 0.2 03 04 0.5

erances (Figure 11). As ex-
target contrast loss

pected, higher target contrast
losses result in substantially
lower power usage. The ques-
tion of where this threshold
should be for losses to re-
main imperceptible or accept-
able remains an open avenue for future work. We also include a
comparison between the offline and the real-time approach in the
supplementary material.

Figure 11: The relationship
between target contrast loss
and brightness factor.

In terms of performance, our implementation in Unity has an
overhead of around ~ 25ms on a computer with an Intel Core i7-
9700K and an NVIDIA RTX 2080. It should be possible however to
drastically reduce this overhead to under Sms by further optimizing
the GPU implementation, as shown in similar luminance-contrast
models [TAW*19; TMP#*23].

7. Limitations and future work

The effectiveness of our method depends on the content. Sequences
with little brightness and detail variation will benefit less from our
approach. An interesting extension to our method would involve
guiding the optimization with additional information about impor-
tant regions within the sequence. This would enable prioritizing
contrast preservation in specific frames while enabling more ag-
gressive dimming in frames without crucial content. Our method
can also be combined with contrast enhancement techniques. We
did not explore this in our work and view these methods as inde-
pendent, leaving the combination for future exploration.

The online alternative of our method has not been perceptually
validated with subjective experiments involving participants. While
promising as a proof of concept, a more careful controller design
could substantially improve its behavior and runtime performance.
For example, there are many different approaches, e.g., [Eva50], to
define optimal control schemes based on a set of constraints (i.e.,
overshoot, peak transient response time). The challenge in apply-
ing them is their requirement for a robust mathematical model of
the system. Alternatively, natural image statistics or reinforcement
learning could be used to learn the optimal parametrization for our
PID-controlled system.

Our experiments used a power consumption model derived for
an LCD panel with a uniform backlight. However, this model is
not applicable to all display technologies. Our method can still be

© 2025 The Author(s).
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used across various technologies; however, the power consumption
model should be adjusted, and the exact amount of savings will vary
depending on the specific technology. An interesting direction for
future work is to extend our method to exploit the local dimming
capabilities of displays.

Another exciting venue for future research is exploring saccadic
suppression. Similar to other perceptual techniques [SPW*18;
GMG*24] that utilize saccadic eye movements or blinks to hide
content manipulation, it may be possible to perform quicker up-
dates to display brightness during such events. This could enable
more agressive dimming and, as a result, greater power savings.

8. Conclusions

Power efficiency presents a significant challenge for emerging VR
technologies, which demand increasingly higher image quality and
performance. In this paper, we have introduced a novel technique
for managing image brightness over time to achieve a desired
power budget while maintaining uniform temporal contrast loss.
Our work enhances detail visibility and perceived quality with-
out introducing perceivable artifacts. Furthermore, we have exten-
sively validated our approach, which has been shown to align with
visual adaptation models, through various perceptual experiments
and corroborated our power saving claims through a custom hard-
ware proxy. Additionally, by tracing connections to control theory,
we have introduced a proof-of-concept real-time formulation of our
approach, achieving very promising results and increasing the ap-
plicability of our method. We believe our framework could spark
further interest in adaptive brightness modulation featuring more
robust low-level vision models, and it could be of interest to vary-
ing fields ranging from video streaming and playback to VR games
and cinema.
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