
SAARLAND UNIVERSITY

MASTER’S THESIS IN COMPUTER SCIENCE

Fabrication of objects with controlled
deformation behaviour using

tetrakaidecahedron cells

Author:
Ildar Gilmutdinov

Supervisor:
Dr. Piotr Didyk

Advisor:
Michal Piovarci

Reviewers:
Dr. Piotr Didyk

Prof. Dr. Jürgen Steimle

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Science

in the

Perception, Display and Fabrication
Faculty of Natural Sciences and Technology I



ii

September 28, 2017



iii

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)





v

Abstract

One of the main needs of a 3D printer user is to control stiffness of the printed
objects. Despite of the rapid growth of 3D printing industry, modern devices are
still limited in the available material gamut. Several approaches were proposed in
order to overcome this limitation. Among them there is a family of methods that use
microstructures that allow to achieve a wide range of material properties. However,
they possess disadvantages such as discretization at transition margin between re-
gions of different stiffness and high possibility of the underlying microstructure to
be broken due to localized stresses. In this work, we wanted to explore how to ex-
tend one of the methods to achieve a gradual transition change and make printed
objects more durable . Using the theory developed in material science we propose to
use the tetrakaidecahedron cell with one of the highest theoretical durability values.
We derived the model to relate density of a cell grid and its mechanical properties.
Knowing the target density, we can optimize cell grid geometry according to the
desired elasticity thus achieving a continuous heterogenous distribution of proper-
ties within the object. To enable an intuitive way of designing objects with varying
elastic properties, we allow user to specify how object should deform under a given
force. This information is later used in an optimization procedure to compute the
distribution of elastic properties within the object.
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Chapter 1

Introduction

With a growth and development of 3D printing industry, it became possible to fab-
ricate objects of various scale, complexity and precision. On one hand, industry
can achieve highly flexible mass-production process by quickly readjusting setup of
the machines. On the other hand, artists can use 3D printing for rapid prototyping
to give additional dimension of perception in exploration of their work. There are
many fabrication technologies, such as fused deposition modeling, where the tool
drops filament at certain positions or selective laser sintering and digital light pro-
cessing, which are based on solidification of polymers under light exposure. These
technologies, commonly referred as additive manufacturing, ganed wide recogni-
tion. Though they differ in their approaches, they are quite similar in the challenges
users meet by working with them.

One of them are fabricability constraints. Not every shape can be printed. If over-
head angle is too big, the model will collapse and fall. Another significant problem
is a limited material gamut. In most cases, only one material per printing process is
available. This implies constraints not only on visual aspects, such as color, but also
on the mechanical properties that can be reproduced. Next problem to be considered
is the computation effort required to procces model mesh.

These challenges were addressed in several works. One of the first to overcome
limited material gamut was carried out in [Bickel et al., 2010]. There, new mate-
rials were obtained by stacking layers of base materials, available for the printing
device, and the combination of layers with desired deformation behaviour being
found through discrete optimization process.

In contrast to [Bickel et al., 2010], other works [Panetta et al., 2015, Schumacher
et al., 2015, Martínez, Dumas, and Lefebvre, 2016] were concentrated on the use of
microstructures. Using homogenization theory [Allaire, 2002], one can obtain the
coarse-level elastic properties of the tiled object, knowing properties of the unit tile.
Complementary problem, i.e. in finding a tile that could yield a desired behaviour
on macrolevel, was approached by [Bendsoe and Sigmund, 2004]. [Panetta et al.,
2015] used it to generate families of metamaterials, each covering some part of pos-
sible material space. Despite of the advantages, such as flexible control and reduced
material usage, new challenges arise: connectivity and continuity problem. They
appear due to the fact that the shape of each structure is individual and not any two
tiles can be connected with each other. [Panetta et al., 2015] used to generate families
of microstructures by specific parametrization of nodes and struts, which allowed to
average neighboring cells to connect them. [Schumacher et al., 2015] used to popu-
late space of possible microstructures by continuously interpolating structures that
are close to each other in terms of elastic properties. Having several different can-
didates for a single material property allowed to formulate connectivity problem as
an assignment problem, minimizing discrepancies between neighboring cells.
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Solving an optimization problem is often a costly computational task. [Martínez,
Dumas, and Lefebvre, 2016] proposed to use a Voronoi Diagram (VD) as a basic
microstructure, where elastic behaviour is controlled through a polynomial relating
VD properties with elastic properties. Though this method in some way approaches
continuity problem and there is no problem with connectivity by construction, it has
issues with fabricability. Firstly, some of the edges can be overhanged. They can fail
to be printed and due to complex truss structure, it can cause the whole structure to
collapse. On the other hand, the structure can be generated in such a way that load
during interaction is distributed unevenly and slight press can damage the object.

In this thesis we address the challenges discussed above, yet trying to avoid aris-
ing issues. Our work is based on generation of microstructures using Voronoi Dia-
gram similarly to [Martínez, Dumas, and Lefebvre, 2016]. In contrast to them, we
are looking for regular structures rather than stochastic ones. We generate open-cell
foam, where edges of each cell form a specific polyhedron called tetrakaidecahedron,
or a Kelvin cell in material science. This structure exhibits lower value of isotropy
than an irregular one, but posseses higher durability.

In Chapter Two, we give a description of mechanical models developed in mate-
rial science that allow to relate microstructure’s geometry and the mechanical prop-
erties it will have on macroscale. Also, we will try to derive an empirical model from
the samples that we fabricate and compare it to analytical ones.

In Chapter Three, we address the problem of achieving a continuous heteroge-
nous distribution of elastic properties within the object. Briefly, idea of the method
lies in imposing a cubical grid over the mesh and deform it in a specific way. Elas-
ticity of the single tetrakaidecahedron cell mainly depends on its size. Thus, by
controlling spatial variation of the sizes within the grid, we can achieve a connected
structure meeting prescribed requirements with smooth transitions. The process of
derivation of elasticity from the description of deformation behaviour is performed
by the method described in [Xu et al., 2015].

The results of the conducted experiments and simulations are presented in Chap-
ter 4.

As the outline, our main contributions are:

• We experimentally analyzed the use of a Kelvin cell as a more durable alterna-
tive to a Random Voronoi Foam

• We explored existing material science models to relate the size of a unit Kelvin
cell structure with its stiffness and validated them on collected measurements

• We developed a framework for computation of an object tiling to achieve a
heterogenous deformation behaviour distribution
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Chapter 2

Homogenous foam

This chapter is devoted to homogenous foams in a sense of its geometry and prop-
erties within one body. Firstly, we introduce fundamental concepts of material me-
chanics in order to make the reader familiar with terms that we use. Next, we will
give a description of tetrakaidecahedron (Kelvin) structure and discuss approaches
to predict its mechanical properties. Finally, we will describe the process of the ac-
tual fabrication of the foams.

2.1 Background on material mechanics

The simplest analysis tool to assess basic material properteis is a force-displacement
curve. It depicts how much force was applied to an object when it was undergoing a
certain deformation. However, these quantities depend on the object size. In order to
avoid it, we use quantitites that characterize intrinsic properties of a material: stress
σ and strain ε. They correspond to force and displacement normalized by interaction
area and sample size:

σ =
F

A
, (2.1)

ε =
d

L
, (2.2)

where F is a measured force and A is an area of load, d is a measured displacement
and L is the size of sample in the direction of applied force. Using these quanti-
ties, we can define a stress-strain curve as a size independent alternative to the force-
displacement curve:

FIGURE 2.1: Stress-strain curve

The curve (2.1) depicts how much stress the material exerts, when it undergoes
certain deformation. One can see three regions on this curve : AB - rising, BCD -
plateau and then again rising DE. We are interested in the first region. It describes
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object’s elastic behaviour, which means that the object will return to its original state
after endured deformation. Incline of this line defines central quantity that we will
use - the Young’s modulus E

E =
σ

ε
(2.3)

The curve region after the first peak describes object’s plastic behaviour. At this point
(the point C in the Fig. 2.1), the object will undergo irreversible deformations. Using
Young’s modulus for a material description means simplification of the material’s
behaviour to a linear one. There are many other models that capture non-linear
behaviour of the materials, but if deformations are small, in most of the cases, it
can be approximated with linear model and in this work we make this assumption
too. Consequently, we are interested mostly in the first part of the curve and do not
analyze non-linearity.

2.2 Model of Kelvin cell

In nature, foam is a porous substance, containing bubbles of gas. Since it has a wide
application in different industrial areas, a lot of research was conducted to under-
stand mechanical properties of such materials. In pursue to analyse them, theoreti-
cal models of the underlying microcstructure were developed. In the past, they were
used to model mechanical properties, but in this work we show how to use one of
these microstructures not for analysis, but rather for synthesis. The tetrakaidecahe-
dron (or Kelvin cell [Thompson, 1887]) is a a polyhedron with 14 faces comprised of
six quadrilateral and eight hexagonal faces:

FIGURE 2.2: Tetrakaidecahedron

Advantages of using this model are two-fold. Firstly, it allows for an easy and
elegant construction. Foams are the object of study for material scientists. In order
to simulate its growth, they use Voronoi Diagram (VD). This is a widely used tool
for analysis of open-cell elastic foams[Zhu, Knott, and Mills, 1997]. Formally, it is
defined as a partitioning of space into regions, where points of one region are closer
to this region than to any other. Interestingly, by imposing a specific pattern on
position of seeds, one can achieve different regular microstructure packing of the
space. For example, if we imagine the space to be subdivided into a cubic cell grid
and place a seed in every corner and center of each cubic cell (Fig. 2.3), the obtained
VD will result into tetrakaidecahedron. It allows us to parametrize foam by the side
length a of the cubic cell.
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FIGURE 2.3: Body-centered-cubic packing

Another advantage of Kelvin cell is its best isotropy value among other packing
patterns [Luxner, Stampfl, and Pettermann, 2007]. However, even higher isotropy
can be achieved by foams that have irregular structure. Approach of [Martínez,
Dumas, and Lefebvre, 2016] follows this idea, but basing on [Babaee et al., 2012],
regular structures lose its durability in terms of yield strength when irregularity is
introduced. Thus, favouring regular Kelvin cell we sacrifice isotropy, but achieve
higher durability.

2.3 Mechanical models for prediction of elastic properties

To use foams for fabricating objects with desired stiffness, we first need to under-
stand how to control it. Different theoretical models of foam predicting mechani-
cal properties were developed. They use different deformation mechanisms as the
defining ones for mechanical behaviour of microstructure. Mostly, they are based on
beam theory, assuming axial and bending rigidity of each strut.
In [Gibson and Ashby, 1989] (G&A) a general formula for open-cell foams is given
as

E = EsCγ
2, (2.4)

where Es stands for stiffness of base material, C is a constant and γ is a relative
density. The constant C can vary, depending on the structure’s geometry and other
factors (e.g. non-uniform cross-sections of struts). One of the models that is more
precise in its formulation is given by [Zhu, Knott, and Mills, 1997]:

E =
0.60021 · Es · γ2

1 + 0.9003 · γ
(2.5)

Expression (2.5) depends on two parameters: Young’s modulus of the base material
Es and the relative density of the foam γ, which is a ratio between the volume of
solid material in the foam and the whole volume occupied. Since we know exact
geometry of the Kelvin cell, we can give an assessment on relative density of the
foam by computing γ for a single cell. [Sullivan, Ghosn, and Lerch, 2008] give the
expression that relates γ to the length L of the tetrakaidecahedron’s edge:

γ =
3A

2
√

2L2
, (2.6)

where A is a cross-section area. Expression (2.6) also depends on the type of the
cross-section of the beam. Here and further, we consider only model with circular
cross-section.

It is important that treatment of struts as beams imposes a certain limitation on
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the cell geometry. The ratio of length to width should be at least three. This re-
quirement places an upper limit on the relative density of the foam for which the
model predictions will be valid. According to the experiments, conducted in [Zhu,
Knott, and Mills, 1997], relative density should not exceed 10-15%. Beyond that
limit, predictions start to be unreliable.

2.4 Validation of models

In order to validate models, proposed in the previous section, we fabricate several
samples representing unit material tiles (Fig. 2.4) and measure their Young’s mod-
ulus. The details of fabrication process will be given in the next section. Now, we
want to describe the setting of performed measurements. Since the construction of
Kelvin cell foam is based on the packing of seeds in cubic cell, we will differentiate
them by the side length of the unit cell’s enclosing cube (Fig. 2.3). Relation between
the Kelvin cell’s edge length L and the edge length a of enclosing cube is given by

L =
a
√

2

4
. (2.7)

We have printed three cubic samples with different edge length of the enclosing
cubic cell: 2.5, 2.65, 2.8 mm. All struts have the same cross-section area - a circle of
radius 0.15 mm. This is the minimal printable cross-section we achieved that was
also used by [Martínez, Dumas, and Lefebvre, 2016].

FIGURE 2.4: Kelvin cell foams sample

In order to assess elastic behaviour of the samples we used an uniaxial compres-
sion test. For this purpose, we used a machine (Fig. 2.5) that consists of a sensor
and a pressing plate, which is actuated by two motors. When the plate presses the
object, we know exact displacement of a step, and for every step sensor records the
value of force with which the object resists compression. Using this setup, we can
record a force-displacement (FD) data, from which we obtain a stress-strain curve.
By fitting the curve to a line and taking the inclination coefficient, we can extract
Young’s modulus E.
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FIGURE 2.5: Uniaxial Test Machine

Knowing Young’s moduli of our samples set, we tried to validate several models
(Fig. 2.6). Apart from the material science models described in previous section, we
also tried to fit other function in order to catch dependance between cell size and its
Young’s moduli for further use.

The model of Zhu (2.5) stongly disagreed with our data. Though being specif-
ically developed for Kelvin cell, the validation provided in [Zhu, Knott, and Mills,
1997] is performed not by comparison with measurement of actual foams, but from
simulations, which pushes this model farther from actual context. In contrast, the
general model of Gibson & Ashby (2.4) for cellular structures yielded a good fit,
since it had a free parameter that allowed us to fit model according to the data.

The best fit was obtained by the 3rd degree polynomial. Apart from passing
through the whole sample set, this choice is also important, because unlike the
other functions that we tried (higher degree polynomial, exponential function) it is
monotonous and passes through coordinate system origin, which obeys a physical
sense.

FIGURE 2.6: Model fitting
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Behaviour of the Zhu and G & A models can be explained by several reasons.
First, technology that we used for printing imposes certain constraints that do not
allow the size of printed cubes to be more than 3.5 cm. The Kelvin cells, in their
turn, do not scale and should have a fixed size to possess desired properties. Since
the cube sample has to be tiled fine enough to exert average elastic behaviour, we
are limited in the range of Kelvin cell sizes we can achieve. As a consequence, the
length-width ratio in the samples that we fabricated was between 3 and 4. Taking
into account restriction mentioned in Section 2.2, it means that we were operating
on the edge of reliable predictions. It is also bolstered by the fact that in more finer
samples we could observe rapid increase in stiffness.

Next factor that could affect elastic behaviour are the artifacts of fabrication pro-
cess. Under the microscopic study, they look like a stack of small plates (Fig. 2.7).
The structure of such beams can behave differently from the classic beams.

FIGURE 2.7: Photos of fabricated foam in 40x zoom

2.5 Fabrication of the foam

Technology that we use for fabrication is DLP printing, which belongs to the class
of additive manufacturing. In this approach, object is printed layer by layer by so-
lidifying resin undergoing UV light radiation. Thus, we need to supply a stack of
images that represent slices of the object. In this chapter we want to describe, how
we render these images.

Usually, one uses existing software to generates slices. However, output of the
Voronoi Diagram generation is a collection of line segments, which can be assigned
to an arbitrary thickness. Existing software performs slicing by cutting every triangle
of the mesh with a plane. If we convert these segments to solid cylinders, then some
artifacts can arise, e.g. cutting plane can go through a vertex or edge of a triangle.
Also, processing of such a fine mesh would take a significant amount of time.

Due to specificity of the geometry of objects that we print, we implemented a
slicer that takes it into account. Slices represent images of a fixed resolution. We
query each pixel of each slice and check, whether any line segment intersects the
point. If yes, we color pixel with white. Otherwise, we leave it black. Checking
intersection is done by a simple geometrical test.

In order to accelerate rendering, we employ two improvements. When we pro-
cess a slice, we consider only those segments that are intersected by the plane formed
by the slice. We presort segments according to Z coordinate, having second point of
segment be always non-lower than the first one. Next, in order to not traverse the
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whole canvas, we compute a bounding box for each line segment, intersecting cur-
rent plane, and go only within this box. We take left-upper- and right-bottom-most
values of segment endpoints coordinates and perform line-plane intersection check
only within the rectangular region.

Algorithm 1 Slicing
Input : edges of Voronoi Diagram
Output : stack of images

1: τ ← radius of the beams cross-section
2: sortSegments()
3: for k = 1..n do
4: segments← initializeSegments(k)
5: for idx = 0...|segments| do
6: s = (a, b)← segments[idx]
7: s_norm← ||s||
8: s.normalize()
9: leftMargin← min(a.x, b.x)

10: rightMargin← max(a.x, b.x)
11: topMargin← min(a.y, b.y)
12: bottomMargin← max(a.y, b.y)
13: for q = (leftMargin, topMargin )..(rightMargin, bottomMargin) do
14: t← (qp − s.a) · s
15: if t < −τ

2
or t >

τ

2
+ s_norm then

16: continue
17: end if
18: qp ← s.a+ t · s
19: if ||qp − q|| ≤ τ then
20: make the pixel (i,j) white
21: break
22: end if
23: end for
24: end for
25: end for
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Chapter 3

Heterogenous foam

In previous chapter we described the pipeline of fabrication of homogenous foams.
Now, we want to move to more challenging case - generation of foams with spatially-
varying deformation behaviour. First, we describe how to generate such a foam
given a map of Young’s moduli. Then, we give a description of method proposed
by [Xu et al., 2015] to derive the Young’s moduli map from the user-specified load-
deformation behaviour.

3.1 Elasticity control

Researchers approached the problems of spatial-varying elastic properties in dif-
ferent ways. [Panetta et al., 2015] used to generate families of microstructures by
specific parametrization of nodes and struts, which allowed to average neighboring
cells to connect them. [Schumacher et al., 2015] used to populate space of possible
microstructures by continuously interpolating structures that are close to each other
in terms of elastic properties. Having several different candidates for a single ma-
terial property allowed to formulate connectivity problem as an assignment prob-
lem, minimizing discrepancies between neighboring cells. In [Martínez, Dumas,
and Lefebvre, 2016], authors did not have explicit connectivity problem, because
resulting foam is being constructed through Voronoi Diagram (VD). They achieve
spatially-varying stiffness through placing seeds in an adaptive grid, where subdi-
vision is performed when more seeds should be placed in the region of interest, since
denser seeding will lead to a stiffer foam.

Our approach also relies on VD, but in contrast to [Martínez, Dumas, and Lefeb-
vre, 2016] that generates a random foam, we want to achieve a regular structure.
Using an adaptive grid would lead to inconsistencies on the boundaries violating
the seed packing pattern of Kelvin cell (Figures 4.6 and 4.7). In order to preserve the
pattern and also achieve spatial variation of properties, we extend our approach by
a specific seeds position computation that will be described in the following section.

3.2 Grid deformation

With use of models that relate stiffness and the size of cube enclosing Kelvin cell
(Section 2.2) we can transform the problem of achieveing desired stiffness distirub-
tion within the target object into geometric context. Our goal becomes to find such a
grid that after placing the seeds in it according to the pattern, resulting Kelvin cells
will match desired distribution as close as possible.

Posing this task as an optimization problem we have to define the following
constituents: domain, objective function and constraints. Since we want to deform a
grid, domain is defined as a set P of corner points that comprise it.
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The objective function should penalize discrepancies between current cell sizes
and the target ones. So, it would be natural to choose a sum of length differences
between current cell edge lengths of each cube and the target ones. Concerning con-
straints, we should take into consideration the shape of cell, since we want it to stay
cubic. One way to do it would be to penalize angles between edges that meet at the
corner for deviation from 90◦. However, it can cause undesired behaviour in form
of disorientation of the grid as a whole relative to the main axes, since cube angles
can be correct, even if the whole cube is tilted arbitrarily. To avoid this problem, we
modify an objective function to penalize differences between vectors on the edges of
target and current cells instead of their lengths. Imagine one grid cube, where there
is a vector assigned to each edge (Fig. 3.1). Target cells are always oriented parallel
to the main axes and the vectors assigned are just unit base vectors scaled by the
target cell size.

FIGURE 3.1: Grid cell c

Thus, even if the current cubic cell matches the desired size, but is disoriented or
inclined, it will be reflected in the value of objective function:

min
P∈V o

1

2

∑
c∈C(P )

12∑
i=1

||li,c − gi,c||2, (3.1)

where V o is an interior of the target object, C is a set of cubical cells falling in the in-
terior V o by at least one of the comprising corner points P, li,c is one of the 12 vectors
lying on of the edges of a cubical cell c in the current grid and gi,c is a corresponding
vector on the edge of the cubic cell in the target grid.

The set of target cell sizes is constructed by evaluating model inverse to one of
the presented in previous chapter (distribution of the Young’s moduli map in section
3.3). The obtained set contains target cell size value for every mesh element. Due to
the fact that typically a mesh element is smaller than the target size of cell and the
fact that due to cell changing process cells are getting displaced, on every iteration
we check for each cell, what is the closest mesh element to the cell centroid and the
closest candidate’s value will be assigned as a target the size for the cell.

In order to solve optimization problem (3.1) we use Conjugate Gradient Method
implemented in Poblano toolbox [Dunlavy, Kolda, and Acar, 2010]. We feed the
gradient
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∑
c∈C(P )

12∑
i=1

(li,c − gi,c), (3.2)

and the objective function to the solver and obtain positions of cells’ corner
points.

Some results of the grid deformation procedure can be seen on the Fig. 3.2.

(A) Bottom view (B) Side view

FIGURE 3.2: Grid deformation for simple cuboid

Colors on the cuboid reflect its stiffness. The red part corresponds to the stiffer
region, which implies smaller size of cells. On the opposite, in the softer region,
colored with blue, cells should possess a bigger size.

Having the deformed grid cells, we can populate them with seeds according to
the Kelvin cell pattern (Fig. 2.3), i.e. one seed in every corner and center of each cell,
and perform Voronoi Tesselation [Lévy and Liu, 2010], (Fig. 3.3).

(A) Grid populated with seeds (B) Clipped Voronoi Di-
agram

FIGURE 3.3: Deformed grid and VD
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FIGURE 3.4: Render of a Kelvin foam
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3.3 Derivation of Young’s moduli distribution

In this section we describe the process of obtaining distribution of stiffnesses over
the object mesh. In order to achieve a smooth heterogenous distribution, we im-
plemented a technique by [Xu et al., 2015]. In this method, user specifies load-
displacement pairs at particular points (Fig. 4.8) and as a result, the algorithm as-
signs stiffnesses to every element of mesh, such that requirements at points of inter-
est are satisfied and resulting distribution is smooth.

The core of the method lies in solving optimization problem, where Young’s
moduli are updated in such a way that discrepancies between the loads resulted
from simulation based on current Young’s moduli and the target loads are mini-
mized.

As an input the user specifies force-displacement pairs in form of "grips", assign-
ing two points on the parts of the object as if it was pinched. The vector connecting
these points defines direction of the load. After specifying grips, user assigns mag-
nitude of the applied force along the direction.

We should mention that in the original paper, authors perform optimization in
two steps: one is actual material optimization for satisfying force-displacement con-
straint and the second one is handle position optimization, which updates a position of
the handles. Since we assume that load points stay the same throughout the whole
process, we do not consider this second phase and focus only on material optimiza-
tion problem.

3.3.1 Simulation

The simulation process is one of the key components of the employeed method. In
general, problem of analysing how a certian object will be deformed under a certain
load is called an elastostatic problem and is formulated as the following boundary-
value problem (BVP):

−∇ · σ = f, in Ω (3.3)

σ = C :
1

2
(∇u+∇uT ), in Ω (3.4)

u = 0, in ΓD (3.5)
σ · n = gN , in ΓN (3.6)

where σ is an internal stress resisting external load f in the body Ω, f is a load
vector, C is an elasticity tensor, which basically encodes information about elastic
properties, u is a displacement vector and n is a normal along the object’s contour.
Equations (3.5) and (3.6) stand for boundary conditions, where the boundary is split
on two segments ΓD and ΓN . On the first segment, the so-called Dirichlet conditions
are defined, which fix the exact displacement in the region. The latter segment, ΓN ,
corresponds to Neumann conditions that require loads to take values of gN along
the normal n.
A common approach to solve this BVP numerically is a Finite Element Method
(FEM): one projects function of u on the space of piece-wise linear functions, split-
ting problem domain on "finite elements" (tetrahedrons, in our case). This method
allows us to reformulate original problem (3.3-3.6) as a sparse linear system that one
can efficiently solve. We use a common notation for the linear system: K is a stiff-
ness matrix, f is a load vector and u is a displacement vector. Thus, FEM problem is
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stated as

Ku = f (3.7)

By construction, the stiffness matrix K depends on two main elasticity parameters:
Young’s moduliE and Poisson’s ratio ν. So, correct functional notation forK should
be K(E, ν), but since ν is assumed to be constant and dependance on E can be
understood from context, in some places they are omitted and for simplicity we will
use K instead of K(E, ν).

The boundary conditions (3.5-3.6) are considered in the linear system (3.7) in the
following way: Dirichlet conditions are realized through a large penalization term -
by adding a large value to entries of K that correspond to the fixed elements. Second
type of boundary conditions - Neumann conditions are realized through an actual
assignment of load values at the corresponding entries of the load vector f .

3.3.2 Static condensation

Since user assigns displacement-load pairs only on a particular parts of object, from
the FEM point of view, we are not interested in what will happen on elements, where
no loads are assigned. Hence, we would like to reorder lines of the linear system to
get a direct relationship between current displacement and loads at target elements.
A procedure for it is commonly referred as a static condensation [Guyan, 1965].

We split load vector f in two parts: f̄ - loads specified by user and f̂ - free loads,
that can be assumed to be zero or any other force. Same logic is followed in conven-
tion on displacements ū and û. Thus, the linear system K(E)u = f can be rewritten
as: [

K11(E) K12(E)
K21(E) K22(E)

] [
û
ū

]
=

[
f̂
f̄

]
(3.8)

Then, using block-Gaussian elimination, one can express relation between dis-
placement ū and loads f̄ on constrained vertices following steps:

K11(E) · û+K12(E) · ū = f̂

K21(E) · û+K22(E) · ū = f̄ ,
(3.9)

K11(E) · û = f̂ −K12(E) · ū
û = K−111 (E) · (f̄ −K12(E) · ū)

(3.10)

Substituting û, we arrive at

K21(E) ·K−111 (E) · (f̂ −K12 · ū) +K22 · ū = f̄ (3.11)

K21 ·K−111 · f̂ − (K21 ·K−111 ·K12 −K22) · ū = f̄ (3.12)

(K22 −K21 ·K−111 ·K12) · ū = f̄ −K21 ·K−111 · f̂ (3.13)

Taking the term in front of ū as K̄, we rewrite last equation as

K̄ · ū = f̄ −K21 ·K−111 · f̂ (3.14)

Thus, we arrive at a linear system that encodes relationship between displace-
ments and loads on constrained vertices only. Since our goal is to know what forces
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are exerted under given deformation, we arrive at the expression for the f̄ as

f̄ = K̄ · ū+K21 ·K−111 · f̂ (3.15)

3.3.3 Optimization Problem

Following [Xu et al., 2015], our goal is to obtain such a distribution of Young’s mod-
uli E that it will match desired constraints and will be smooth. Authors present an
objective function that satisfies these requirements:

min
E

1

2
ETLE +

α

2
||f̃(E)− f̄ ||2, (3.16)

where f̃(E) = K̃(E) · ũ+K21(E) ·K−111 (E) · f̂ (3.17)

Optimization problem (3.16-3.17) penalizes discrepancy between the current vec-
tor of load f̃ and a specified f̄ . We want to notice that the expression (3.17) is an
equivalent version of the expression (3.15) with only difference that instead of relat-
ing fixed forces and displacements, it relates its values on the current iteration.

Apart from the main term, objective function (3.16) contains a smoothness energy
term, which is defined as a an energy of a discrete mesh Laplacian. Authors discuss
different variations (e.g. weighted mesh Laplacian). Since they do not observe much
difference, they use a standard discrete mesh Laplacian:

(LE)i =

m∑
j=1

ωi,j(Ei − Ej), (3.18)

where m is a number of tetrahedrons and ωi,j is 1 if tetrahedrons i and j share a
vertex, and 0 otherwise.
Constant α in (3.16) regulates importance of the force matching term. Since smooth-
ness energy term can often be overweighting, in order to enforce importance of con-
straint satisfaction, we set it to a value around 10.
We approach the optimization problem (3.16) with conjugate gradient method, using
implementation from Poblano toolbox [Dunlavy, Kolda, and Acar, 2010]. Addition-
ally to the objective function, a gradient is provided, which is defined as

LE + α(
df̂(E)

dE
)T · (f̂ − f̄)), (3.19)

where
df̃(E)

dEe
=
[
K21(E)K−111 (E) −I

] dK
dEe

[
K−111 (E)(K12(E) · ū− f̂)

−ū

]
, (3.20)

for every e = 1, ...,m, i.e. for every element.
Term dK

dEe
is a derivative of stiffness matrix K over individual Young’s modulus

of element e, on which K depends linearly. It can be obtained by computing K hav-
ing Young’s modulus of element e set to 1 and zeroing all the other elements.

3.3.4 Model reduction

Original problem (3.16) is a high-dimensional one. It optimizes for vectorE of length
equal to number of finite elements in the mesh, which can be up to several thousand
for a reliable simulation. One of the contributions made by the [Xu et al., 2015]
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is to optimize not for a vector of Young’s moduli E, but instead using so-called
material vectors. These are obtained through decomposition of E on a subspace of
eigenvectors of mesh Laplacian:

E = Φz, (3.21)

where Φ is a matrix of first r eigenvectors, obtained by solving generalized eigen-
value problem:

Lyi = µjV yj , (3.22)

where yj is an j-th eigenvector, µj is a corresponding eigenvalue and V is a per-
element volume matrix.

Applying (3.21) to the (3.16), optimization problem becomes

min
z

1

2
zTQz +

α

2
||f̃(z)− f̄ ||2, (3.23)

where f̃(z) = K̃(z) · ū+K21(z) ·K−111 (z) · f̂ , (3.24)

Q = ΦTLΦ (3.25)

The gradient of the objective function turns into

Qz + α(
df̃(z)

dz
)(f̃(z)− f̄), (3.26)

where
df̃(z)

dz
=

m∑
e=1

df̃(z)

dEe
Φe = HGΦ, (3.27)

taking H =
[
K21K

−1
21 − I

]
(3.28)

and G consisting of columns

dK̃

dEe

[
K−111 (K12ū− f̂)

−ū.

]
(3.29)
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Chapter 4

Results

In this chapter, we want to present results of the experiments concerning the claims
that we made in this thesis. The main claim is that Kelvin structure yields more
durable and sustainable behaviour than the analogous structures - Random Voronoi
Foam (RVF) from [Martínez, Dumas, and Lefebvre, 2016]. We evaluate durability
by both simulating structures and fabricating representative samples. In the first
section we describe results of physical simulations of the deformation of two kinds
of foams : Kelvin foam and RVF. In the next section, we present durability tests on
the actual printed samples. We make measurements of their stiffness and see how
it changes after repeated tests. Second part is devoted to the behaviour of heteroge-
nous foams. We analyze effects of grid deformation and compare the cases where
two regions of different stiffnesses transit. Finally, we show the results of Young’s
moduli distribution optimization on the sample mesh.

4.1 Stress distribution simulation

For the simulation we took two samples that have similar stiffness : Kelvin cube
with the unit cell size 2.8 mm and strut thickness 0.25 mm and RVF cube with rel-
ative density 33 and strut thickness 0.3 mm. We modeled them as beam connected
structure in the ABAQUS simulation package. As boundary conditions, we set their
bottom to be fixed and top to be displaced by 1 mm down. The results of the simu-
lation you can see in the Fig. 4.1.
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(A) Kelvin foam un-
deformed

(B) Kelvin foam deformed

(C) RVF undeformed (D) RVF deformed

FIGURE 4.1: Simulations of compression of foam samples

Visualizations of the deformed cubes are both scaled to the range between zero
and maximal stress. In the center of RVF sample you can see one red and few yellow
regions, which mean that stress in this structure is very localized. "Red" beams carry
the main load, while many others beams are almost inactive. In contrast, for Kelvin
cells, load is concentrated mainly in the nodes and is distributed among neighboring
cells, which is additionally illustrated by the distribution of loads within simulated
structures (Fig. 4.2). Probabilities to meet lower load values for Kelvin foam are
concentrated from 0 to 3N, whereas RVF possesses bigger probabilities for higher
stress values.
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FIGURE 4.2: Histograms of loads within the deformed samples from
the Fig. 4.1

4.2 Durability tests

One way to assess durability of the object would be to construct its sress-strain curve
and look for a breakage point on the plot, which corresponds to a decrease in resist-
ing force (point C in the Fig. 4.3).

FIGURE 4.3: Stress-Strain curve

However, the breakage point is not always explicit on the plot, as it was in our
case. To show a rapid decrease in resistance, object should change its form to high
extent. Our objects are truss structures, consisting of thin beams that can break even-
tually, one by one, rather than together at once. Therefore, decrease in force is rather
a series small breaks, which are hard to detect on the plot.



22 Chapter 4. Results

Due to the reasons stated above, we test the structures durability by repeated
uniaxial compression tests (Section 2.4) with increasing displacement magnitude.
We start with one millimeter, then increase it on every next trial by one millimeter
more: two, three and so on, till we compress the object up to half of its height. This
approach is motivated by the fact that if the object broke a bit during the test, then
in the next measurement it will be a bit softer. Looking at how many of stress-strain
curves look similar to each other and at which point we can observe a significant
decrease in stiffness will allow us to judge the ability of the structure to resist stress,
therefore, its durability.

We prepared two samples, one representing Kelvin structure and one represent-
ing Random Voronoi Foam (RVF). For the tests, two samples should have similar
stiffness values. We took Kelvin cube with even higher stiffness compared to RVF,
since for a stiffer cube there is a higher risk to get broken during equivalent defor-
mations.

First series of compression tests were performed on the RVF (Fig. 4.4). You can
observe 10 stress-strain plots. Each curve corresponds to the test with particular
strain, increasing from 3% to 35%. Normally, to assess the linear behaviour of the
object, it is a common practice to take up to 5% strain to evaluate its Young’s moduli
[Bickel et al., 2010]. Therefore, we mainly focus our attention on this region. The
plots #1-5 are similar and have close inclination coefficient. However, you can see
that already after the first trial there is a reduction in stiffness. Every next plot does
not collide with the previous one, which means that the object gets softer after every
test. Finally, on the test #6, the more significant stiffness fall can be observed, which
means that the object underwent plastic deformation after going through 20% strain
during the test #5.

As was discussed in the previous section, sequential decrease in stiffness can be
explained by the localized stresses, concentrated on the few struts, that carry the
main load. After one of such struts break, load concentrates on the next one, but the
overall structure loses its initial stiffness and becomes softer.

One can notice that plots in Fig. 4.4 contain negative Young’s moduli at the starts
of stress-strain curves. This behaviour is due to the measurement device. If, after
the uniaxial test, sample undergoes plastic deformation, i.e. gets broken, it does
not completely restore its original state. The object does not touch the force sensor
anymore, which being set with the certain value in the beginning of experiments
will show negative force values.
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FIGURE 4.4: 10 sequential uniaxial compression tests on the RVF cube
with the density of 37 seeds per cube

The Fig.4.5 depicts stress-strain curves for the compression tests on the Kelvin
cube. You can see that curves from 1 to 7 are very similar even beyond 5% strain.
First change occurs only during the test #8, but before 5% it is still similar to previous
tests. On the tests #9-10 we can see the first significant decrease in stiffness. Loading
the sample by compressing it beyond 27% causes crushing. It can be seen on the
following tests #9-10, where the curves’ incline reduces drastically.

From the presented results, we can conclude that the Kelvin foams exhibits higher
durability than the Random Voronoi Foams (RVF). It was demonstrated that the
Kelvin foam had a higher rate of stiffness preservation after the compression tests,
whereas RVF started to break after first interactions.
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FIGURE 4.5: 10 sequential uniaxial compression tests on the Kelvin
cube with cell size 60 pxls

4.3 Transitions in heterogenous foam

To analyze the technique proposed in Section 3.2, we compare one case generated
by two different approaches. The case is a heterogenous foam sample consisting of
two regions that meet in the middle. The left region is supposed to have cell sizes 9
mm and the right region - 6.5 mm, i.e. on 30% smaller.

Two techniques for generating heterogenous foam differ in the approach of plac-
ing seeds. In the first one, described in Section 3.2, seeds are placed so that cubical
cells transit smoothly between regions. In the second approach, we place them keep-
ing the pattern and cell sizes only within target regions. To compare two techniques
we present renders that illustrate both techniques in the Fig. 4.6.
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(A) Smooth transition

(B) Hard transition

FIGURE 4.6: VD-generated cuboid foams with different transitions

You can see that in case of hard transition cell sizes are much more accurate than
in smooth transition case. However, it possesses two major issues. First, transition
region has a lot of excessive edges (Fig.4.7) that causes additional stiffening. Sec-
ond reason is that, usually, the description of desired elastic properties within the
object is given as a smooth map, which after discretization can give a rise to sev-
eral sequential transition regions that will be surrounded by the walls of additional
struts. Using our approach allows to adapt the structure to a given map of cell sizes
continuously with minimal distortions.
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(A) Side view (B) Top view

FIGURE 4.7: Cut of the transition part from the Fig. 4.6b

4.4 Optimization of Young’s moduli distribution for defor-
mation behaviour

Generating map of Young’s moduli from the user-specified deformation behaviour
is an important part of the pipeline. To demonstrate approach of Xu et al., 2015 we
used a model of a teddy bear as an example. We selected nodes of the mesh and
assigned different loads to them, imposing unit displacement (Fig. 4.8). For the
paws, we assigned the loads equal to 5N, for the head 4N and for the belly 2N. That
is, we wanted to achieve stiffness map that corresponds to hard head and paws and
a soft belly.

(A) Front view (B) Back view

FIGURE 4.8: Selected nodes

In the Fig.4.9 you can see visualization of Young’s moduli map as a color map.
As expected, parts of the object got desired stiffness values.



4.4. Optimization of Young’s moduli distribution for deformation behaviour 27

FIGURE 4.9: Young’s moduli distribution

Additional information can be seen in the Fig. 4.11. It depicts the target loads
and the obtained forces for the mesh nodes for which user specified the behaviour.
Two force sets match each other with acceptable degree of precision.

Having the Young’s moduli map, we performed further steps of the pipeline:
grid deformation, population with seeds, generation of Voronoi Diagram, slicing
and 3D printing. Final result you can see in the Fig. 4.10.

(A) Front view (B) Back view

FIGURE 4.10: Fabricated teddy bear
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FIGURE 4.11: Target forces and resulting forces
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Chapter 5

Conclusion

In this thesis we presented a new approach to generate foam cellular structure using
Kelvin cells. We claimed that it posesses higher durability than analogous solutions
and demonstrated it through a series of experiments.

From the physical simulations we analyzed how intrinsic forces are distributed
within the structure. It had shown that the problem of localized stresses in Random
Voronoi Foam, proposed in [Martínez, Dumas, and Lefebvre, 2016], is not presented
to the same extent in our foams. The Kelvin foam exhibits more even distribution of
the loads.

In order to assess durability of the structure we made a series of tests. In these ex-
periments we were conducting repeated uniaxial compression test. After each test,
we were increasing depth of compression. Presented results show that Kelvin struc-
ture is more durable than RVF in terms of withstanding larger loads and undergoing
equivalent deformations without a decrease in stiffness.

Another contribution of this work is a framework to use Kelvin structure for
fabrication of objects with spatially-varying elastic properties. We implemented an
approach from [Xu et al., 2015] to generate a smooth distribution of Young’s moduli
within the object from a user-specified deformation behaviour. Having the map,
we can derive desired properties for Kelvin cells (sizes) using the models that were
adapted by us from material science. To achieve smooth transitions between cells we
presented a technique, where we impose the uniform grid structure over the object
and warp it in a way to best match target sizes and minimize regions incongruity.
We populate the obtained grid with seed,s according to the pattern, that results in
the Kelvin cell foam after Voronoi Diagram tesselation. We extract line segments
from the diagram’s edges and generate slices for fabrication on 3D printer.
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