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Abstract

Light-field imaging has various advantages over the traditional 2D photography, such
as depth estimation and occlusion detection, which can aid intrinsic decomposition. The
extracted intrinsic layers enable multiple applications, such as light-field appearance edit-
ing. However, the current light-field intrinsic decomposition techniques primarily resort
to qualitative comparisons, due to lack of ground-truth data. In this work, we address this
problem by providing intrinsic dataset for real world and synthetic 4D and 3D (only hor-
izontal parallax) light fields. The ground-truth intrinsic data comprises albedo, shading
and specularity layers for all sub-aperture images. In case of synthetic data, we also pro-
vide ground-truth depth, normals, and further decomposition of shading into direct and
indirect components. For real-world data acquisition, we make use of custom hardware
and 3D printed objects, assuring precision during multi-pass capturing. We also perform,
qualitative and quantitative, comparison of existing intrinsic decomposition algorithms
for single image, video, and light field. To the best of our knowledge, this is the first such
dataset for light fields, which is also applicable for single image, multi-view stereo, and
video.
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1 Introduction

An image captured with a conventional camera is a result of a complex process that depends
on camera settings as well as scene configuration. Such scene parameters comprise scene
geometry, illumination, object material, participating media, viewing direction, and other
properties. In the field of computer vision, decomposing an image into its intrinsic proper-
ties is vital for scene understanding [14]. Intrinsic decomposition can enable applications
like recoloring, object segmentation, compositing, appearance editing, etc. One can aim to
extract different intrinsic properties from a given image, such as reflectance [13, 33, 38, 43]
or geometry [25, 44, 49, 53]. Extraction of specularity intrinsic layer is a problem on its own
[9]. Many algorithms have been proposed for extracting intrinsic layers from single images
[19, 54], single images with depth [11, 24, 29], multi-views [35, 51], videos [21, 34, 41, 52]
and light fields [6, 7, 8, 27, 46]. Recently, some methods have been developed that use
machine learning techniques for intrinsic decomposition [15, 30, 42, 45, 55].

In most of the above-mentioned methods, authors perform a qualitative comparison with
others or a quantitative evaluation with respect to synthetic data. A lack of enough real-
world intrinsic ground-truth datasets is the reason for such approach. Moreover the data-
driven techniques cannot generalize easily considering lack of training data, especially for
real world scenes.

A light field aims to record the light information in a given volume or passing through a
plane. The light-field technology is gaining more and more attention due to the popularity
of virtual- and augmented-reality. Adelson and Bergen [4] gave a generic definition of light
field, which considers all rays in a volume. In our work, we restrict ourselves to the two-
plane parametrization of light field [37].

Using light fields leverages the task of intrinsic decomposition, since depth reconstruc-
tion and occlusion detection benefit from the high number of available views. Moreover
extracting intrinsic layers also enables various applications, like light-field appearance edit-
ing. However one of the major difficulties in dealing with real-world wide-baseline light
fields, lies in its capturing process. It is mandatory to calibrate incorporated cameras with
high precision. On top of this, acquisition of light-field intrinsic layers requires multiple cap-
turing passes that need to be aligned precisely in terms of both camera and object position.

Our contribution consists of two main parts. Firstly, we provide real-world ground-
truth intrinsic layers for 3D and 4D light fields. Secondly, we render synthetic ground-truth
intrinsic layers for 4D light fields. In case of synthetic data, we also provide ground-truth
depth, normal and further decomposition of shading into direct and indirect components.

2 Related Work

In this section, we review existing ground truth intrinsic datasets. Then, we discuss chal-
lenges associated with wide-baseline light-field acquisition and existing capturing setups.
Finally, we discuss existing intrinsic decomposition algorithms with an emphasis on those
which can handle light-field data.

Ground Truth Intrinsic Data The work of Grosse et al.,[28] (also known as the MIT
dataset) is the first real world intrinsic decomposition dataset. Later, Barron et al.,[10, 12]
rendered MIT dataset models using natural illumination. Beigpour et al.,[16, 17] improved
upon the real-world MIT dataset by using multi-illuminants and also considering multiple
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views in the later work. The MPI Sintel dataset [23, 50] has become popular as a synthetic
scene benchmark for intrinsic decomposition evaluation. However, the shading layer, in Sin-
tel dataset is obtained by dividing the clean pass of the scene (containing non-lambertian
objects) with the albedo pass, which is physically incorrect. We consider a separate specu-
larity layer to handle such scenario. In a recent work, Bonneel ef al.,[22] provide synthetic
intrinsic ground-truth data for limited number of images. Shi et al.,[45] provide ground-truth
rendering data for 3D objects from ShapeNet database. To the best of our knowledge, no
dataset exist for light fields providing all intrinsic layers of shading, albedo, and specularity.

Wide-Baseline Light-Field Acquisition The parallax of a light-field dataset is one of the
most important properties when processing light-field data. As a rule of thumb, we denote
datasets with stereo parallax < 1px as dense (or narrow-baseline) light field. Datasets that
exceed 1px are denoted as sparse (or wide-baseline) light field. The wide-baseline dense
camera arrays by Vaish et al., [48] was one of the first attempt to capture light fields with
wide-baseline. Kim et al., [31] used a setup with 1.5 m slider for denser sampling of several
outdoor scenes. Different types of camera array setups have been proposed in the Stanford
Light Field Archive [3]. Their latest setup was a two dimensional system build from Lego
bricks carrying a DSLR camera.

Adhikarla et al., [5] develop a one-meter long motorized linear stage for capturing real-
world scenes. Ziegler et al.,[56] use cantilever axes to capture natural scene spreading in the
order of meters in both horizontal and vertical direction. One of the important challenge in
all the above setups is camera calibration and precision of camera re-positioning. We use the
setup similar to Ziegler et al., [56] for real-world 4D light-field capturing, and for 3D light
field (only horizontal parallax), we employ the setup similar to Adhikarla et al., [5].

Intrinsic Image Decomposition A broad survey of intrinsic image decomposition algo-
rithms is presented by Bonneel et al., [22] and Ma et al., [40]. The retinex theory of color
vision, introduced by Land [36], formed the basis of many intrinsic decomposition algo-
rithms. Hachama e al.,[29] and Chen ef al.,[24] use RGB-D images to include priors based
on normals. Xie et al.,[51] employ the disparity information from the given multi-view
stereo data to introduce additional constraints. Meka et al.,[41] use a combination of lo-
cal and global spatio-temporal priors to achieve real-time performance. Duchéne et al.,[26]
consider lighting conditions along with shadows to compute intrinsic layers with an appli-
cation towards relighting. Tunwattanapong et al., [47] use a rotating arc of LEDs (spherical
gradient illumination) to extract reflections and normals in world-space for both diffuse and
specular components. Kim et al., [32], use a two-way polarized light-field (TPLF) camera
to show layered reflectance separation in the angular domain for human faces. The Direct
Intrinsic from Narihara et al.,[42] was one of the first data-driven approach to solve intrin-
sic decomposition problem. Later, Shi et al.,[45] also considered non-lambertian objects
in their training data. Baslamisli ez al., [15] incorporate traditional intrinsic decomposition
priors in their custom loss function. Garces et al.,[27] and Alperovich et al.,[6] focus on
intrinsic decomposition of light fields with narrow baseline. In a follow-up work Alper-
ovich et al.,[7] introduced priors to tackle cast shadows and inter-reflections. In a recent
work Alperovich et al., [8] use an encoder-decoder network to extract specular and diffuse
components for narrow-baseline light fields. In another recent work, specifically aimed for
wide-baseline light-fields, Beigpour er al.,[18] take inspiration from multi-view stereo in-
trinsic decomposition to get consistent results.
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3 Data Acquisition

In this section we describe the setup and capturing details for real scenes and the rendering
specifications for the synthetic data. Our real-world acquisition step is inspired by the work
of Beigpour et al., [16] and Grosse et al., [28]. However, we extend it for light fields and
use only 3D printed objects. In order to obtain synthetic ground-truth data we make use
of physically based rendering in Blender (Cycles) [20]. Our ground-truth data consists of
shading (comprising interaction of scene illumination with geometry), albedo (diffuse scene
reflective component, independent of view direction), and specularity (directional reflectance
component) intrinsic layers for each sub-aperture image of the light field.

Image Formation Model As defined by Levoy and Hanrahan [37], a light field can be
considered as a collection of images. We, thus, generalize the image formation model used
by Grosse et al.,[28] for light fields. We assume that each sub-aperture image (/) in a light
field is composed of diffuse (I;) and specular (C) components.

I=I;+C (1

The diffuse component can be further expressed as the product of shading (S) and albedo (A)
layers.
I;=S-A 2

Our ground-truth extraction methodology of intrinsic layers is similar to the work of Beig-

pour et al., [16]. The extracted shading (E) and albedo (Z) are relative and proportional to
the absolute values of S and A respectively,

SocS and AecA 3)

The relative values of albedo and shading are extracted in a way such that the product equals
1,. For brevity, we omit the pixel co-ordinate x. However, Eqs. 1-3 hold for all pixels in all
linear-encoded sub-aperture images.

3.1 Capturing Real-World Intrinsic Layers

The real-world dataset consists of intrinsic layers for three 4D and three 3D light fields. The
scene setup, for both cases, consists of 3D printed objects arranged on a horizontal platform,
see Fig. 1b. We use two flicker-free LED based lamps for scene illumination. The lamps
are DC powered in order to maintain constant illumination during the capturing process. In
order to capture the scenes we have used Canon EOS 6D and 5D as well as Sony Alpha 7 R
II cameras. All the cameras were equipped with high-resolution full-frame imaging sensors
and a 50 mm or 28 mm Canon lens, respectively. Refer to supplementary material for specific
camera and lens configuration used in each scenario. The camera plane is perpendicular to
the scene layout as shown in Fig. 1b. We cover the area surrounding the scene with diffuse
black cloth in order to minimize inter-reflections and ambient lighting.

3D Light-Field Capturing: In order to capture 3D light field, we follow the approach
of Adhikarla et al.,[5]. A high-quality camera is mounted on a linear motor stage. The
camera movement is controlled using a stepper-motor and an Arduino board (as shown in
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(a) 3D models (b) Scene Layout

Figure 1: (a) The two set of 3D printed objects, colored and gray. (b) Light-field captur-
ing setups for (left) 3D (linear motor stage with a mounted camera and light-sources with
polarizing filters) and (right) 4D (camera mounted on a cantilever axes moving along the
directions shown in the figure) light fields.

Fig. 1b). The difference between consecutive camera positions is small leading to dense
light-field acquisition. The precision in camera movement is in the order of pm. Please refer
to Adhikarla et al.,[5] for more details. The whole capturing system is relatively mobile and
can be easily installed on top of a study-table (see Fig. 1b).

4D Light-Field Capturing: We take inspiration from Ziegler et al.,[56] for capturing
wide-baseline light fields. The camera moves both in horizontal and vertical directions,
along the camera plane (indicated by green arrows in Fig. 1b). The camera can be translated
by up to 4 m horizontally and 0.5 m in vertical direction with a precision error of 80 m.
Please refer to Ziegler et al.,[56] for further details. In contrast to the 3D Light-Field Cap-
turing, this system consists of large mechanical moving parts, and the whole setup is fixed
thereby posing restrictions in terms of scene setting.

In both setups mentioned above, the large translation of the camera enables capturing
light fields with large parallax.

Specularity Extraction: We use the approach introduced in Grosse et al.,[28] to capture
the specularity layer for sub-aperture images. The colored objects are placed on the horizon-
tal platform as shown in Fig. 1b. We mount a linear polarizing filter in front of each of the
light sources, so that the light illuminating the scene is polarized. Another polarizing filter is
mounted on the camera lens. The specular and diffuse versions of the scene are captured in
two runs. In the first run, we tune the polarizing filter on the camera so that the specular and
diffuse reflection passes the filter. In the second run, we tune the filter to block the specular
reflection. Thus, we capture each sub-aperture image (/) and its corresponding diffuse ver-
sion (Iy), respectively. The specularity layer (C) is obtained using Eq. 1. The extension of
single image based specularity extraction for light fields is not 100% accurate. However the
inaccuracies are negligible, we further discuss this as a limitation in Sec. 5.

Albedo and Shading Extraction: In order to capture the shading version of the scene,
we use a second, identical, set of objects painted with diffuse gray color (RAL7042 paint:
[R-142, G-146, B-145]). These objects should align precisely with their colored counterpart
at pixel level. We ensure such alignment accuracy by using two sets of 3D printed objects
and tight fitting rigid pins for their placement. The two set of objects are printed using a high
precision printer [1] for the above requirement (see Fig. 1a), an alternative approach of using
just one set of objects and painting it twice, as done by Beigpour et al.,[16], would destroy
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the objects original color and texture making it impossible to repeat the acquisition step is
needed (e.g., due to errors or to test different variations of the same scene).

The ambient illumination in the scene is suppressed by the black surrounding curtains.
Once the objects are placed properly, the polarizing filter is tuned such that only diffuse

reflection can pass. Thus the relative shading (E), diffuse gray version of the scene, is cap-

tured. The relative albedo (Z), diffuse reflectance, is computed using Eq. 2. Fig. 2 shows
real-world scenes captured for 3D and 4D light fields. In Fig. 3, we show the ground truth
intrinsic layers for two scenes, “3D Scene 2” and “4D Scene 2” respectively.

4D Scene 1 4D Scene 2 3D Scene 1 3D Scene 2

Figure 2: Central view of the two out of three captured real-world 3D and 4D light fields.

Diffuse Albedo Shading Specularity

Figure 3: Ground-truth real-world intrinsic layers for 4D Scene 2 (top) and 3D Scene 2
(bottom).

3.2 Rendering Intrinsic Layers

As compared to real-world capturing, we have more freedom in terms of scene selection and
rendering of multiple intrinsic properties for synthetic light fields. We use Cycles integrated
in Blender for physically based rendering. We have used open-source scenes available in
Blend Swap [2] with minor modifications. The blender scenes are selected in a manner such
that they look realistic, are difficult for intrinsic decomposition, and cover a wide variety
of reflectance textures. The light field is rendered by regular rectangular sampling of the
camera plane (which is perpendicular to viewing direction). For all sub-aperture images, we
also render the intrinsic layers of albedo (A), depth, normal, direct (S;), and indirect (S;)
shading.

Albedo, Shading, and Specularity Extraction: As stated previously, albedo is directly
rendered for each view. Shading is obtained as the sum of its direct and indirect components,

S=S;+S; 4)
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The direct shading (S,) is the part of shading caused by direct illumination (single bounce of
rays from the scene objects), and indirect shading (S;) is formed due to indirect illumination
(multiple bounces of the rays from the scene objects). The diffuse version of the view is
obtained by multiplying albedo and shading as in Eq. 2. The specular layer is obtained as the
difference between the original image and its diffuse version using Eq. 1. In Fig. 4, we show
the center view, and in Table 3.2 we depict the parallax values for all the rendered 4D light
fields. The intrinsic layers, rendered for the center view, of Scene 2 are depicted in Fig. 5. In
Scene 7, we consider the interesting case of human skin modeling. Since the skin reflectance
cannot be explained by our image formation model (see Eq. 1), we further decompose the
non-specular component into only diffuse and subsurface scattering components, see Fig. 6,
similar to Kim et al.,[32].

We commit to provide modified open-source scenes, scripts for distributed rendering
(over a cluster) and post-processing. Note that all images shown in this work are gamma
corrected and scaled for better visualization. The provided dataset contains both gamma
corrected images and images with linearly encoded pixel values.

Scene 1 Scene 2 Scene 3 Scene 4

Scene 6 Scene 7

Figure 4: Central view of all the synthetic rendered scenes.

4 Evaluation of The Results

We evaluate four intrinsic decomposition algorithms, namely Bell et al.,[19] for single im-
ages, Meka et al.,[41] for videos, Alperovich et al.,[7] and Garces et al.,[27] for light fields
using our dataset. All the results presented in this paper, for different algorithms, are based
on respective author implementation and for Garces et al.,we only perform qualitative com-
parison. We calculate the average error per sub-aperture image for each of these algorithms
using DSSIM [39] as an error metric, DSSIM (x,y) = (1 — SSIM(x,y))/2, which better cor-
responds to the human perception than MAE or RMSE.

We have used a Matlab implementation for calculating SSIM (Structural Similarity In-
dex) values. In order to measure consistency of intrinsic decomposition between views, we
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I\Isucrfr:lrl])eer Min. Depth (in m) | Max. Depth (in m) | Stereo Parallax (in pixels)
1 2.44 4.39 17.41
2 10.29 49.07 22.03
3 10.59 17.67 21.71
4 2.13 4.94 25.54
5 6.15 15.92 44.19
6 4.45 16.33 12.16
7 11.69 26.85 12.32
8 3.81 6.51 17.66

Table 1: Minimum and maximum object distances and parallax between extreme views in
one direction for our dense light-field rendering.

Diffuse Shadin Direct Shading

= T—
A PN
EES

: LA

Indirect Shading

Specularity Depth Normals

4

Figure 5: The rendered intrinsic layers for scene 2.

Original Specularity Diffuse Subsurface

Figure 6: The non-specular component in case of a face scene can be further decomposed
into only diffuse and subsurface scattering components.

compute the variance in error for all sub-aperture images, see Table 4, comparing different
intrinsic decomposition methods. We show qualitative comparison of intrinsic decomposi-
tion and specularity extraction algorithms in Fig. 7 and Fig. 8 respectively.



Scene Single Image Video Light Field
Type/Num (Bell et al.,) (Meka et al.,) (Alperovich et al.,)
u o u c u c

Syn./ 2 1.05¢—1 | 4.66e—4 | 1.99¢—1 | 2.33¢—8 | 1.56e—1 | 4.20e—7

Syn./ 3 2.19¢e—1 | 1.48¢—3 | 2.87e—1 | 595¢—8 | 8.20e—2 | 9.22¢—6
Real3D/2 | 492¢—2 | 8.83¢—5 | 8.79¢—2 | 2.0le—6 NA NA
Real3D/3 | 3.10e—2 | 4.22¢—6 | 7.31e—2 | 1.20e—6 NA NA
Real4D/2 | 4.23¢—2 | 3.88¢—5 | 3.69¢—2 | 1.02¢—6 | 4.67e—1 | 2.34e—5
Real4D/3 | 4.38¢—2 | 559¢—5 | 3.69¢—2 | 1.75¢—6 | 4.66e—1 | 2.0le—5

Table 2: The average (1) and variance (o) of error in albedo extraction, for a set of sub-
aperture images for real and synthetic data. Refer to supplementary for a similar table for

shading extraction.

Bell et al., Meka et al., Alperovich etal., Garcesetal., Ground Truth

Y" SEIR R
Figure 7: A comparison of intrinsic decomposition methods for single image (Bell et al.,[19]),
video (Meka et al.,[41]) and light fields (Alperovich et al.,[7] and Garces et al.,[27]) using our ground-

truth data.

Reflectance

Shading

Alperovich et al.,[7] Alperovich et al.,[8] Ground Truth

Figure 8: A comparison of specularity extraction methods for light fields.

Specularity

5 Discussion

Applications: Though supporting research on intrinsic decomposition methods is our main
contribution, we want to emphasize that our rich dataset can be used for other applications as
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well. The dense, real-world 3D and synthetic 4D, light fields, can be used to evaluate light-
field reconstruction or depth-image-based rendering (DIBR). For the 3D printed objects,
we provide corresponding geometry data. In case of synthetic images, we render depth
and normal passes. The above two points make our dataset suitable for applications like
shape from shading and 3D Reconstruction. In our dataset, we provide a separate specular
layer. Thus making our data suitable for assessing specularity removal techniques. For
our synthetic rendering, we consider indirect shading pass which can be used for judging
algorithms that aim to compute indirect illumination.

A light field can be considered as a special case of multi-view stereo, comprising of
multiple views (single images), which can also be visualized in video format. Thus our
dataset is applicable for different data modalities.

Limitations: Due to varying viewing angle, the above methodology of real-world specu-
larity extraction is not completely accurate. In an ideal scenario, one would use only distant
light source with a linear polarizing filter. Otherwise the orientation of the polarizing fil-
ter (in front of the camera) needs to be re-adjusted every time the camera position changes.
However, in practice these inaccuracies, in terms of specularity leakage in diffuse pass, were
not noticeable visibly.

6 Conclusion

We provide intrinsic dataset for real and synthetic light fields. We believe that our rich dataset
will contribute to the research of light-field intrinsic decomposition and other applications,
as discussed in Sec. 5. Our dataset contains challenging surface color texture, complex
geometry, and moving specularities. In case of real-world data acquisition, we make use
of custom hardware and 3D printed objects, to ensure precise alignment for our multi-pass
capturing scenario. We also provide scripts to render (using a cluster) and process light-field
intrinsic layers, thereby enabling others to render such layers for an arbitrary scene. We
believe that this is the only light-field dataset that provides ground-truth intrinsic layers of
albedo, shading, and specularity.
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