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Manipulating refractive and reflective binocular disparity
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Figure 1: We split a synthetic stereo image (a) into a ray tree (b), and compute its multiple disparity interpretations (c), which
are put into a cost function (d), that are used to find new camera setting (e) leading to an optimized combined stereo image (f).

Abstract
Presenting stereoscopic content on 3D displays is a challenging task, usually requiring manual adjustments. A
number of techniques have been developed to aid this process, but they account for binocular disparity of surfaces
that are diffuse and opaque only. However, combinations of transparent as well as specular materials are common
in the real and virtual worlds, and pose a significant problem. For example, excessive disparities can be created
which cannot be fused by the observer. Also, multiple stereo interpretations become possible, e. g., for glass, that
both reflects and refracts, which may confuse the observer and result in poor 3D experience. In this work, we
propose an efficient method for analyzing and controlling disparities in computer-generated images of such scenes
where surface positions and a layer decomposition are available. Instead of assuming a single per-pixel disparity
value, we estimate all possibly perceived disparities at each image location. Based on this representation, we define
an optimization to find the best per-pixel camera parameters, assuring that all disparities can be easily fused by a
human. A preliminary perceptual study indicates, that our approach combines comfortable viewing with realistic
depiction of typical specular scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Current 3D display technology does not reproduce all depth
cues, limiting the range of binocular disparity that can be
presented on a screen. As a result, content needs to be ma-
nipulated beforehand, to assure sufficient viewing comfort.
The most common manipulation is remapping disparity into
the so called “comfort zone”, i. e., a disparity range which
can be comfortably viewed by a regular observer [LIFH09,
SKHB11]. These techniques [JLHE01, LHW∗10, DRE∗11,
etc.] are mostly concerned with disparities produced by dif-
fuse opaque surfaces. Content with transparency and specular

shading poses several challenges: First, excessive absolute
disparities, both horizontal and vertical, are created and there
is no way to control them. Second, multiple disparity inter-
pretations at one location e. g., for glass, that reflects and
refracts at the same time, result in an excessive relative dis-
parity. No known method handles manipulation of multiple
stereo interpretations. Additionally, rivalry i. e., fusion of
different colors for the same scene space locations further de-
grades viewing experience. In this work, we propose a system
to control disparity in computer generated images of such
scenes (Fig. 1). First, we decompose the image into a ray-tree,
where every bounce of light is represented by a single im-
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age node. Next, we use a computer vision-inspired matching
on deferred shading buffers to estimate disparities, as well
as rivalry and importance for each image node. Finally, this
information is used to optimization stereo rig parameters, to
provide more comfortable disparity values and smaller binoc-
ular rivalry. As there is no definite perceptual model of what
reflections are preferred or comfortable to fuse we provide
an interactive user interface for intuitive control of specular
stereo.

2. Background and Previous Work

In this section, we provide a background on stereo percep-
tion as well as an overview of stereoscopic image editing
techniques which are related to our work.

Stereopsis In order to achieve a good perception of layout,
the human visual system (HVS) combines information from
many different cues (i. e., occlusion, perspective, motion par-
allax, etc.). One of the strongest cues, which also creates
the most immersive experience, is stereopsis [Pal99, HR12].
Binocular vision provides two views of the environment from
slightly different locations. As a consequence, the two reti-
nal images of the same object are shifted relatively in both
eyes. The magnitude of this displacement is used to estimate
the position of objects in the 3D space. Although stereopsis
is a very compelling cue and became widely used (e. g., in
movies, video games, visualizations, TV, etc.), at the same
time it introduces many problems. One of them is visual
discomfort.

Visual discomfort in stereocopic images The most promi-
nent source of visual discomfort is the interplay between
the accommodation and vergence depth cues. While the
first acquires depth information from kinesthetic sensations
of relaxing and contracting intraocular muscles responsible
for correct light focusing, the latter deduces a similar in-
formation from extraocular muscles which control the eye
movements. Since these two mechanisms are linked to im-
prove their performance, when stereoscopic 3D content is
shown on a flat screen, a conflict between these mechanisms
arises [LIFH09]. The HVS can usually tolerate this contradic-
tion only in a small region around the screen (the so-called
comfort zone) [SKHB11]. Limiting disparities to the com-
fort zone does not yet guarantee a good 3D perception. In
order to perceive a clear three-dimensional object, both the
left- and the right-eye images need to be fused. This requires
solving a stereo-matching problem between left and right
retinal images. The HVS performs the matching only in a
small region around the horopter called Panum’s fusional
area [HR12, Ch. 14]. Beyond this region double vision occurs,
which significantly impairs visual comfort. Visual discom-
fort can also be caused by significant differences between
the left- and the right-eye images – so called binocular ri-
valry [HR12, Ch. 12]. In this case, the perceived image is not
stable, but alternates between both views. This phenomenon

occurs often in the real world, where it is a consequence of
view-dependent light effects (e. g., specular highlights, refrac-
tion or glare) [TDR∗12]. When differences between the left
and right views are moderate, the HVS can fuse the images
and tolerate the rivalry.

Stereo content manipulation In order to overcome above
limitations, stereo content is often manipulated accord-
ing to the display conditions [Men09]. For most 3D con-
tent, visual comfort is achieved by adjusting the depth
range in the scene. Such manipulations are performed ei-
ther during capturing by manipulating camera parameters
[JLHE01,OHB∗11,HGG∗11], by extraction from a light field
[KHH∗11], or in a post-processing step [LHW∗10, DRE∗11].
There is, however, not much work addressing the problem
of rivalry and fusion. The rivalry phenomenon has been ex-
ploited by Yang [YZWH12] for the purpose of tone mapping.
They proposed to use dichoptic presentation to improve the
“vividness” of common 2D images. Templin et al. [TDR∗12]
proposed a method for rendering highlights that facilitates
their fusion. No method exists to address stereo content ma-
nipulation for more general image formation such as trans-
parency and specular light transport. Any progress in this
matter requires solving two challenging problems: the deter-
mination of disparities for multiple layers, and estimation of
visually comfortable separations between the layers.

Disparity estimation for Lambertian surfaces For the pur-
pose of 3D content manipulations, it is often desired to re-
cover disparity between the left- and right-eye images. An
important problem is to predict the HVS performance in
stereo-matching, but it is commonly assumed, that some form
of correlation between the left and right eye views is exploited
[FB09]. Such correlation models proved to be useful in esti-
mating viewing comfort when the left and right images are
degraded independently (e. g., compression, blur) [RŚDD11].
Recently, perceptual metrics have been developed to account
for the actually perceived disparity [DRE∗11, DRE∗12]. In
contrast to the previous techniques, they assume that a depth
map is given, and the perceived disparities are computed
based on the HVS sensitivity to different disparity and lu-
minance patterns. Although all above methods work well in
many cases, they are limited to opaque diffuse surfaces. In
more general scenarios, the problem of finding the correspon-
dence between retinal images is not trivial and may lead to
many different interpretations of depth, e. g., as in case of
specular reflections or overlapping transparent surfaces.

Disparity of reflective and transparent surfaces There
are only few techniques for disparity estimation, that al-
low for reflections and transparencies in the analyzed scene
[TKS06, Siz08, SKG∗12]. Here, separate optical flows for
scene surfaces and reflected patterns are computed. These
techniques are still limited to simple scenarios, e. g., just a
single reflection or transparency layer and a piecewise pla-
nar image formation. Moreover, overcoming problems with
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the accuracy of disparity reconstructed this way requires fur-
ther research, while high computational costs reduce their
practical applicability.

Relatively little is known how the HVS identifies the dispar-
ity information resulting from specular reflections. Blake and
Bülthoff [BB90] suggest that the brain “knows” the physics
of specular reflection and based on it the disparity originating
from specular reflection is identified. Muryy et al. [MWBF13]
observe that the disparity signals themselves provide the key
information that enable to reject potentially unreliable dispar-
ity signals, e. g., due to large vertical disparities or horizontal
disparity gradients. In the limit the disparity signal is lost
completely in infusible regions. The transitions from fusible
to infusible regions are not random, but rather exhibit specific
binocular properties, which enable the brain to develop robust
strategies of detecting abnormal disparity signals and judging
their specular origin.

Perception research on stereo-transparency is mostly con-
cerned with random dot stereograms (RDS), where it has
been found that the discriminability of transparent layers is
affected by increasing the number of layers, layer pooling has
been observed for inter-layer disparity below 2 arcmin, and
layer discrimination performance dropped for larger dispari-
ties, or too high density of dots per-layer [Wei89,TAW08]. In
comparison with RDS, there is a number of additional cues
in natural scene images, which facilitate the layer discrimina-
tion. However, there has been relatively little research on this
problem. Akerstrom and Todd [AT88] report that perceptual
segregation of overlapping transparent surfaces is facilitated,
when depth planes are distinguished by color, but not when
they are distinguished by element orientation.

3. Our Approach

Dealing with specular and transparent stereo has four key
challenges, addressed in our approach.

First, the non-unique specular and transparent stereo image
pair, where every pixel maps to many different depths, needs
to be decomposed into a set of perceivable unique stereo
image pair layers. While this is hard for real-world images,
we demonstrate how such a separation can be obtained for
rendered images. To this end we decompose the stereo image
pair by its ray tree (Sec. 3.1). A node (or layer) in this tree
is a stereo image of a certain indirection, e. g., the refraction,
the reflection, the double-reflection, etc.

While disparity of opaque surfaces in computer-generated
images is easily computed, it is difficult for transparent and
specular light paths, that bend the geometry of rays and alter
their disparity. Therefore, in our second step, we estimate
disparity of each layer independently (Sec. 3.2). Computer
vision-inspired matching is used to emulate human stereo
matching, additionally identifying visual importance and ri-
valry for each layer.

The resulting multiple stereo interpretations suffer from

three problems: excessive absolute disparity, excessive rel-
ative disparity and rivalry. Absolute disparity is altered, be-
cause reflection and refraction change the disparity arbitrarily
e. g., beyond what is pleasant to fuse. The absolute disparity
also contains a vertical component, which is another source
of discomfort. Furthermore, the relative disparity between
layers can be excessive for the same reason, consequently
preventing fusion of a combination of reflection and refrac-
tion, such as found in a glass ball. To this end, we use the data
computed before (disparity, rivalry, importance) as an input
to four cost functions (Sec. 3.3), that for each layer assess
its absolute disparity, its disparity relative to other layers, its
rivalry and its similarity to the original disparity.

This cost function is eventually used to optimize per-pixel,
per-layer camera parameters, in order to synthesize the opti-
mal stereo image (Sec. 3.4).

3.1. Specular and transparent decomposition

We use the ray tree constructed during Whitted-style [Whi79]
ray-tracing, to decompose a non-unique synthetic image with
specularities and transparency into multiple unique images
with importance weights.

Ray tree Let the image L(x) = ∑
N
i=1 Li(x) be the sum of N

luminance images L = (L1, . . . ,LN ∈ R2 → R3) which we
call the ray tree of L (Fig. 2).
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Figure 2: Light path through a pixel in a scene with two
reflecting and refracting spheres (Left) and its tree (Right).

In our image formation model, a ray is either reflected
or refracted, allowing to enumerate contributions in a sim-
ple scheme: index 1 denotes the diffuse contribution without
reflection or refraction, 2 denotes one reflection, 3 is one
refraction, 4 denotes one reflection followed by another re-
flection, and so on. The node Li contains the diffuse radiance
or the background color when there is no local hit point. The
particular tree structure and node enumeration is not relevant
in the rest of the algorithm and we will refer to the nodes
in the tree, which are images, as layers. A typical value of
N is 7 = 23− 1, i. e., a diffuse layer and two reflections or
refractions at most. For a stereo image pair (Ll,Lr) a stereo
ray tree is a pair (Ll,Lr) of two trees, one for each eye. Also,
let P l = (p1, . . . , pN ∈ R2→ R3) and P r be the scene-space
location of all surface intersections.

A custom interactive GPU ray-tracer [PBMH02] using
BVHs [WBS07] is used to construct each layer following
the common Whitted-style [Whi79] recursive ray-tracing, but
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instead of point lights, we use image based lighting [Gre86] in
combination with pre-computed ambient occlusion [ZIK98]
for diffuse shading. Refractive rays are weighted according
to Schlick’s [Sch94] approximation. Note that this approach
excludes all distribution effects such as motion blur and depth
of field, but most prominently it excludes all glossy reflections
or refractions.

3.2. Disparity estimation

Computing disparity for opaque surfaces from computer-
generated images is simple, but intractable for specular, trans-
parent or more general image formations (cf. Fig. 3).

Opaque

a) b) c) d) e)

Screen-door Specular Multi-specular Eikonal

Figure 3: Different image formation models (see text).

In the diffuse case (Fig. 3, a), disparity at every pixel can be
computed, by just projecting its scene-space position into the
other eye’s image. This projection depends on the distance to
the diffuse object (blue line in Fig. 3, a). The only exception
are occlusions, i. e., scene-space positions that are visible
to only one eye. For non-CG images, such stereo matching
i. e., finding this mapping is one of the most classic computer
vision problems [SS02]. Still, once the mapping has been
found, it is a simple projection due to rays being straight
lines.

This principle becomes complicated in the presence of
transparency (Fig. 3, b), when multiple scene-space depths
(blue and pink line in Fig. 3, b) map to one pixel. Computer
vision has addressed this problem, for the case of screen-door
transparency, where all scene-space positions that contribute
to the pixel happen to lie on a straight line [TKS06,SKG∗12].
Using a CG decomposition into layers, this problem is eas-
ily addressed. Coincidentally matching different layers is
ignored here.

The next complication occurs in the presence of rays that
do change direction (Fig. 3, c) if they intersect a specular
surface (gren line in Fig. 3, c). In this case, points that do
not lie on a line have to be matched. The change of direc-
tions leads to disparity (Fig. 3, c, dotted line). For specific
conditions, such as planar mirrors [SKG∗12], curved reflec-
tors [CKS∗05, VAZBS08], water surfaces [Mur92] solutions
have been proposed, but no general solution to this problem
exists to our knowledge. Even in image synthesis, finding a
correct mapping is challenging, even for a moderate number
of planar refractors [WZHB09].

Complexity increases, when in addition to direction-
changing rays transparency effects are also present (Fig. 3,

d). Now, multiple scene points map to multiple image points
with changing disparity.

In the most general, “eikonal” case (Fig. 3, e), such as
hot gas or mixing fluids, rays do not even follow straight
lines [SL96]. Still humans are indeed able to see such phe-
nomena in stereo (Fig. 7). Also stereo matching is possible
and computer vision has analyzed optical phenomena such
as gas of varying temperature [IKL∗10].

We do not account for even more general image formations,
such as glossy transport (mapping a ray to a distribution of
rays) or chromatic aberration (mapping different colors in a
ray to different directions).

To simulate human stereo perception in all conditions us-
ing a practical algorithm, we propose to use a specialized
stereo matching algorithm on the pair of layered deferred
shading buffers P (possibly created using a non-standard im-
age formation as seen in Fig. 3, b-e) to extract pixel disparity.
This disparity serves as an upper bound on human perfor-
mance, later to be limited by what the HVS actually can
perceive, including a model of rivalry and occlusion. Each
step is detailed in the following paragraphs.

Stereo matching To our knowledge, no practical method to
predict human stereo matching from images, in particular for
general image formation as explained before, exists. Classic
optical flow [SS02] has difficulties finding the correct flow
and requires substantial compute time. Our problem requires
to compute flow at interactive rates to put the user into the
loop. We therefore propose a specialized matching for stereo
CG images.

The key observation is, that we can use any unique feature
of a surface position associated with a pixel itself as the
key value in stereo matching, because every layer contains
only diffuse radiance. We simply use the 3D positions P
stored in a layered deferred shading buffer, which is unique
for orientable and self-intersection-free surfaces. We use the
approach explained in Fig. 4: For each pixel in each layer, we
know its position, i. e., where the ray from one eye intersected
the surface. We assume this pixel will match with the pixel
in the other eye that is most similar in terms of position
i. e., equal up to numerical precision and pixel discretization.
This pixel is found using a simple exhaustive search in a
2D neighborhood of pixels. A typical search of size 81×9
pixels (≈ 24× 4 arc min) can be performed at a rate of 0.6
megapixels per second in parallel over all pixels and layers on
an Nvidia Quadro 4000. Note, that there is no other obvious
way to invert a general image formation such as in Fig. 3, c–e.
Output of this step are N layers of (potentially also vertical)
pixel disparity D = (d1, . . . ,dN ∈ R2 → R2), expressed in
arcminutes. Since this matching substantially overestimates
human performance, we need to limit its output to actually
perceivable matches, as described below.

Human limitations The HVS uses luminance patterns to
match pairs of corresponding points [FB09]. This process
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Figure 4: Stereo vision with non-straight rays in the “flat-land”. (a) In common stereo image formation Ld, rays go in straight
lines. A point a in the left image (green line) at scene position x on a diffuse surface P is mapped to a point d in the right
image (yellow line) by linear perspective. This mapping is simple to invert to establish a matching. The HVS uses luminance
patterns to identify matches, but simply assuming a unique parametrization of P is an upper bound on the quality. Binocular
stereo perception is solely a deviation from this line (not present in this example). (b) In the presence of specular reflections
and refraction, rays do not go along straight lines, but change directions, diverge and converge, leading to a complex mapping
Ls. Depth perception is created, even for a flat P, simply due to the bending of rays (deviation from the straight dotted line).
Analytically inverting the mapping between the eyes, e. g., to map c in one image back to c′ in the other image, is impossible in
practice. (c) Our solution inverts the mapping numerically: c is matched with f which is closest in scene space (distance in P).

has three main features: matches are proximal, distinctive,
and their contrast has to be sufficient. To quantify this, we
compute importance W = (w1, . . . ,wN ∈ R2 → (0,1)) for
each pixel on each layer as a product of the following three
factors.

First, in terms of proximity, matching is performed hori-
zontally in a range of 3 deg [SKHB11] and in a much smaller
range of 15 arc min vertically [TLA∗12]. We account for
this, using a limited search window that is much wider than
high (81×9 pixels). If no match smaller than a threshold ε

is found, it is considered a (generalized) disocclusion, and
the proximity factor is zero. The choice of ε depends on the
image resolution and the scene size in scene space; in our
experiments ε equals 1/100 of the scene diameter.

Second, the luminance structure must be distinct to be
matched. To detect this, we run an SSD metric α(x,x+di(x))
with a windows size of 3× 3 pixels between the CIE LAB
luminance of the two images Ll

i and Lr
i at locations x and x+

di(x) as well as between the location x and similar alternative
disparities α(x,x+di(x)+y), where y ∈ (−5, . . . ,5)2 ⊆ N2.
The discrete curvature καi of the energy landscape when
varying y is used to rate the match [SS02]: Only if it is high,
we found a unique feature the HVS could match.

Third, the HVS needs a minimal luminance contrast to
perform matching. As the contrast factor, we use a function
similar to Cormack’s Q function [CSS91], that equals 0 for
a luminance contrast of 0, and smoothly blends into 1 for
contrasts above 10 JND. Contrast is computed as the standard
deviation of luminance (Peli’s contrast [Pel90]) in a 17×17-
pixel, Gaussian-weighted window.

Rivalry The main assumptions of our matching approach
was that the HVS might fail to match (w low, d correct),
but does not create false positive matches (w high, d incor-
rect). Therefore, we will never have rivalry due to wrong
matches: the content of each layer is diffuse, so a scene point

has the same color from all points of view, and only points
that have the same scene-space locations are matched. How-
ever, rivalry may still occur for two other reasons: missing
matches / occlusions and because of image structure.

Whenever no match has been detected in the neighborhood
– either due to occlusion, or because the match is too distant –
we extrapolate matches of nearby pixels, using hole filling.
This step is inspired by the filling-in mechanism performed by
the HVS [Kom06]. Next, we compare the luminance values
of the pixels matched, and report rivalry if differences are too
high.

Even if there are no missing matches, rivalry may be still
present solely because of the image structure. The HVS does
not compare individual points, but finite image patches. Even
if pixel colors in the center of the flow are identical, the
structure might be different, i. e., rotated, scaled or changed in
brightness (Fig. 5). Therefore, we compare the local structure
by computing a 7× 7 SSD of the luminance of the stereo
match. While more advanced models of binocular rivalry exist
[YZWH12] they only provide binary values for luminance
images in mono. Output of this step is a tree of rivalry images
R= (r1, . . . ,rN ∈ R2→ R).

Stereo image Left Right

Figure 5: Rivalry detection: even after our “perfect” match-
ing of a stereo image pair (left) and the color difference are
zero (colored rectangles), the structure around each matching
pair can differ and cause rivalry (right).
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Tone mapping / luminance adaptation Special considera-
tion has to be taken, as the input is an HDR image tree pair.
Directly performing stereo matching on the HDR image pairs
of each layer, would result in an overestimate of human stereo
matching performance, as it would match details that are ef-
fectively not perceived, such as in overly bright sky regions
(that appear as featureless white) or overly dark regions such
as shadows (that appear as featureless black). Also the limi-
tations of the display have to be accounted for: features that
will not be reproduced by the screen should also not be used
for stereo matching. Consequently, we assume a certain adap-
tation and display range, and tone-map the HDR image tree
pair to LDR using a linear tone mapper filter it by the human
CSF [Rob66] before stereo matching. While this works well
in practice, and no imperceptible details “pollute” the stereo
matching, the underlying mechanics of contrast perception
and stereo matching would require further investigation.

3.3. Cost function

The disparity and rivalry computed in the previous step mod-
els human perception in a “neutral” way: a certain degree of
vertical disparity or rivalry can be good or bad, depending
on the scene, display device or the stereographer’s objec-
tive. We use cost functions to map the neutral physiological
information to a cost. The cost is defined on the vector of
all disparities d ∈ R2N , rivalries r ∈ RN and importances
w ∈ RN from all layers and in each pixel.

Disparity The disparity cost combines an absolute and a
relative contribution.

The absolute disparity cost function prevents disparity
from exceeding the comfort zone, relative to the screen plane
[LHW∗10]. A typical application is to reduce the disparity of
a curvy refracting object, such as a glass ball that magnified
disparity. It is defined for horizontal and/or vertical disparity
as fa(d,w) = ||Wd||2, where W = diag(w) is an importance
matrix.

The relative (pairwise) cost considers all pairs of dispar-
ity. Typically, it is used, to move a reflection or refraction
closer to a reference depth, e. g., make absolute disparity of a
diffuse surface and a reflection on it similar. It is defined as
fp(d,w) = ||diag(Qw)(Pd−dp)||2 where P ∈R2N×4N2

is a
matrix constructing differences of all element pairs in a vec-
tor, Q ∈ R2N×4N2

is a matrix constructing the product of all
element pairs in a vector and dp ∈ R2N = (λx,λy,λx,λy, . . .).
We set λx = 3arcmin and λy = 0arcmin to prefer small hor-
izontal relative disparities.

Rivalry In general rivalry needs to be avoided so the cost
fr(r,w) = ||Wr||2 is a quadratic potential.

Data term Adding a small data term fd(d) = ||W(d−dd)||2
to the cost function ensures that the optimization prefers the
original disparity dd, if multiple choices are equally good.

Aggregation All costs are independent between pixels but
interdependent between layers. The costs combine as in

f (d,r,w) =αa fa(d,w)+αp fp(d,w)+

αr fr(r,w)+αd fd(d,w),

where α{a,p,r,d} are user-specified weights to control the
respective cost. The result of different control settings are
shown in Fig. 6.

Our optimization solves for an acceptable combination
of multiple conflicting goals (Fig. 6a). Low disparity would
provide comfort and avoid rivalry, but provides no depth im-
pression and vice versa. In general αr is set to the highest
value, assuring that rivalry is removed (Fig. 6b). The weight
αd of the data term is contradicting and set to a lower value
(Fig. 6c). It is mostly required to pick a solution that is close
to the original if multiple solutions are equally good. The
weight αa of absolute disparity reduces rivalry but has to be
set to an intermediate value as its term tends to make the
scene look flat. Its direct counterpart, the weight of sepa-
ration αp, uses the same value to keep a balance (Fig. 6d).
Choosing similar weights allows these two terms to produce a
distribution of disparity allocating retargeted disparity budget
to all layers with a similar inter-layer distributions as in the
original content. For typical scenes with mixed light effects
such as Glasses (Fig. 6a) or Snowball (Fig. 8) the weights are
α{a,p,r,d} = 1,1,10,0.1. For some specific scenes with little
rivalry or large disparity difference between layers (e. g. Skull
or Chinese Paper in Fig. 8) we make the data term stronger
(αd = 1) to preserve more of the original depth. Weights can
also be spatially refined to strengthen individual terms using
a simple painting interface as seen in the supplemental video.

αa = 0      αp = 0     αr = 0     αd = 1 αa = 0      αp = 1     αr = 0     αd = 0

αa = 0      αp = 0     αr = 1     αd = 0αa = 1      αp = 1     αr = 10     αd = 0.1

c)

a)

d)

b)

Figure 6: (a) Our optimization with all costs active,
balancing the disparity distortion and residual rivalry. (b)
Using only the rivalry term, the disparity is locally reduced
where rivalry would be unacceptable. (c) Using only the data
term, rivalry appears in reflections of the right glass and
refraction in the left glass. (d) When using only separation
stereo almost collapses to diffuse disparity.
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3.4. Optimization

The cost defined above, can be used to compare two stereo
image pairs created by a general image formation. To produce
an image pair that has low cost and therefore high stereo
quality, the camera used for shading of the left image is
moved along a line, connecting the left and right eye position
independently for each pixel and each layer. In particular,
if the offset of the camera is reduced to 0, no stereo effects
are present (the layer is mono), and if original offset is used,
maximal stereo effects occur for that layer.

Let g : RN→R2N×RN×RN be the mapping from a cam-
era offset for all layers y∈RN to perceived stereo parameters
(disparity, rivalry, importance, as described in Secs. 3.1 and
3.2) we like to minimize the cost function f (g(y)).

To this end, we first tabulate g for k = 32 inputs in the form
(0/k,1/k, . . . ,k/k). Here, the computation time is dominated
by the requirement to raytrace the scene many times and can
take up to one minute. The tabulated g has similarities to a
light field [KHH∗11], but contains disparity instead of radi-
ance and multiple instead of a single layer. The optimization
itself can then be performed at interactive rates when a user
adjusts a parameter, e. g., by painting weights.

We use gradient descent with restart for optimization.
While f is quadratic in its parameters and its derivative can
be computed analytically, g involves ray-tracing, matching
and our vision model, which do not have an analytic deriva-
tive. As a solution in every step of gradient descent we first
differentiate g numerically and then apply the analytic gra-
dient of f . We use 32 steps of gradient descent. As g might
have several local minima f (g(y)) might have as well. As a
solution we restart the optimization four times with differ-
ent initial camera offsets yi = (1, i/3, . . . , i/3), i ∈ {0,1,2,3}.
The camera offset for the first diffuse layer is constant and
not optimized.

For regularization, the resulting optimal camera offset
is blurred using an edge-aware filter. This optimization is
performed in parallel, independently for every pixel. The
solution is found at lower resolution and later up-sampled
[KCLU07]. In this step, the contribution of each pixel is
weighted by its importance, i. e., unimportant pixels with
mostly meaningless solutions do not affect their neighbors.
Once the optimization has finished, we render the scene one
last time in RGB using the optimal camera settings. We ob-
served a good temporal stability of the optimization under
camera motion as can be seen in the supplemental video.

4. Evaluation

In this section we present results of our approach, which are
used as stimuli in a perceptual study.

4.1. Results

A collection of typical results of our approach, which are
also used in our perceptual study, are shown in Fig. 8. We
compare to a simple solution based on a small constant offset
of reflection/refraction layers, which places them near the
surface of the objects, in a similar fashion to the solution
proposed for reflections by Templin et al. [TDR∗12].

The first column (Fig. 8) shows, how our approach can
retarget excessive disparity in the presence of transparent
surfaces. The dragon behind the curtain is not fusible in the
original image. Enforcing on-surface or near-surface dispar-
ity removes the stereo impression from all objects behind
the curtain. Our approach produces an image where objects
behind the curtain have the appropriate amount of disparity.

Similar observations can be made within the second col-
umn (Fig. 8), but for refracted and reflected rays: The re-
flections on the water surface cause rivalry, and the disparity
of the riverbed is excessive. Competing approaches can re-
duce rivalry, but lose the depth difference between the surface
and the riverbed (consider the floating leaves). Our approach
reduces rivalry of the reflections as well as preserves the
contrasting depth of the riverbed while keeping it fusible.

The third column (Fig. 8) shows a similar setting, where
the shape of the statue behind multiple layers of reflection
and refraction is lost.

In the fourth column (Fig. 8), our approach combines the
skull, the dirt and the mirror as well as the envmap into a
fusible image, while both on-surface and near-surface reflec-
tions make the mirror appear as flat as a diffuse poster. Such
an artifact was indicated as a limitation of methods based on
a constant shift of layers by Templin et al. [TDR∗12].

Fig. 7 shows our approach applied to other non-standard
image formation models, such as Eikonal light transport
[SL96] and fish-eye lenses, which both lead to excessive
and vertical disparity, as well as rivalry on multiple layers.
For Eikonal light transport, we defined the “diffuse layer” pl

0
to be the first intersection where a ray changes direction.

4.2. Study

We conducted a preliminary perceptual study to compare
our approach to other alternatives in terms of visual comfort,
realistic scene reproduction and overall preference. Seven par-
ticipants with tested stereo vision took part in the experiment.
Prior to the experiment, participants received an instruction
sheet stating the purpose of the experiment. This sheet con-
tained an illustrated explanation of the terms “stereoscopic
fusion” and “realistic 3D impression” (see the supplemental
material for details). Images of six different 3D scenes were
used as stimuli covering typical reflection and refraction cases
(Figs. 6, 7(left), and 8). Each scene was shown to participants
in four different versions corresponding to different methods.
The task was to arrange the images in increasing order, first,
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Figure 7: Results of our approach for Eikonal
light transport in a volumetric medium of varying index of
refraction (e. g., temperature) and a fish-eye lens rendering.

according to the ease of stereo fusion, next, to the realism
of 3D impression, and eventually, to the overall preference.
All images were presented in a randomized horizontal order,
at a distance of 60 cm on a Samsung SyncMaster 2233RZ
display (1680×1050 pixels, 1000:1 contrast, office lighting
conditions), using NVIDIA 3D Vision active shutter glasses.
We performed Wilcoxon signed-rank testing to reject the null
hypothesis (p < .05) that the median difference of ranks is
zero and therefore there is no effect (Fig. 9).

-0.5

0

0.5

1

1.5

         

On-surface
Near-surface
Physical

Fusion quality Realistic look Preference

Figure 9: User study results depicted as mean rank dif-
ferences between our approach and other approaches for
different questions. A high value indicates, that the compet-
ing approach ranks behind our approach, a low or negative
value indicates a weaker or reverted rank difference. The
error bars show standard error of this mean rank difference.
Significant (p < 0.05) comparisons are marked by a star.

The study showed that the results produced using our
method are easier to fuse than Physical rendering. For re-
alistic 3D reproduction, our method outperforms both the

On-surface and the Near-surface method. In terms of over-
all preference, our technique produces results better than all
other methods. While our approach is not always significantly
better in all regards than all competitors (but also not signifi-
cantly worse), we conclude, that our technique can provide a
good trade-off between the ease of stereo fusion and realism
of depiction.

It may be surprising that the near-surface solution was
judged worse than the on-surface and the physical solutions.
We hypothesize that this was caused by not accounting for
sharp transitions in material properties, which produces nu-
merous artifacts visible particularly in the “River” and “Mir-
ror” scenes. Adding an edge detector on material properties
layer would help mitigate this issue.

5. Conclusion

In this work, we approached the problem of manipulating
binocular disparity of multiple reflections and refractions,
assuming either standard or non-standard image formation
model. We adapted computer vision-based stereo matching
algorithm to predict what patterns would be fused by the hu-
man visual system in the case of multiple disparities present
at a single location. The resulting disparity and rivalry were
fed into an optimization framework to improve fusibility of
synthetic stereoscopic content, while preserving realism of
depiction. The approach can react to artist control at inter-
active rates, and its outcome is significantly preferred when
compared to simpler alternatives.

Currently, the main limitation is the lack of support for
distribution effects, such as glossy reflections and refraction,
but also depth of field and motion blur. Also our optimization
is performed on pixel disparity, although the human visual
system is sensitive to changes of pixel disparity / vergence of
a certain frequency, relative to a reference. Additionally, our
optimization ignores cross-talk between layers that might lead
to additional false positive stereo percepts. To be applicable
to non-CG images and video, further progress in detection of
multiple specular flows would be required.

As mentioned, the idea could be extended to distribution
effects, or to actively change the scene such that depth per-
ception is optimized.
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Figure 8: Results of different approaches (rows) in scenes (columns) used in the study and discussed in Sec. 4.
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